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1 Introduction

Ancient Egyptian hieroglyphics tell us much about the people of ancient Egypt,
including how they did mathematics.  The Rhind Mathematical Papyrus, the oldest
existing mathematical manuscript, tells us that their basic number system is very similar
to ours except in one way – their concept of fractions.

The ancient Egyptians had a way of writing numbers to at least 1 million.
However, their method of writing fractions was limited.  To represent the fraction 1/5,
they would simply use the symbol for 5, and place another symbol on top of it.  In
general, the reciprocal of an integer n was written in the same way.  They had no other
way of writing fractions, except for a special symbol for 2/3 and perhaps 3/4.  [Gil72]
This is not to say that the number 5/6 did not exist in ancient Egypt.  They simply had
no way of writing it as a single symbol.  Instead, they would write 1/2 + 1/3.

Thus, Egyptian fractions is a term which now refers to any expression of a rational
number as a sum of distinct unit fractions (a unit fraction is a reciprocal of a positive
integer).  The study of the properties of Egyptian fractions falls into the area of number
theory, and provides many challenging unsolved problems.

In this paper we will examine some of the problems concerning Egyptian
fractions which have inspired research from the days of Fibonacci to the present.
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2 Introduction to Construction Algorithms

One basic problem concerning Egyptian fractions is the search for construction
algorithms – ways to write any fraction as the sum of unit fractions.  Over the years,
many different algorithms have been formulated for varying purposes.  They range
from the purely theoretical to the practical and everywhere in between.

It is immediately evident that any rational has more than one distinct Egyptian

fraction expansion.  If 
a
b  = 

1
x1

  + ... + 
1
xn

 , then the equation

1
x  = 

1
x+1  + 

1
x(x+1) 

can be used to obtain 
a
b  = 

1
x1

  + ... + 
1

xn-1
  + 

1
xn+1  + 

1
xn(xn+1)  .

The Egyptians themselves may or may not have had a single algorithm to
construct fraction expansions.  They created a table of expansions of the numbers 2/n
for all odd numbers n < 100 (see appendix B).  Gill discusses some different criteria
which the Egyptians may have used to create the table.  [Gil72]

In this paper, we will only concern ourselves with rationals of the form p/q < 1.
So, wherever it is not explicitly stated, assume that this is the case.  It is possible to
express improper rationals as the sum of unit fractions, but we will not discuss this
(except briefly, in Appendix A).

Before we begin, some brief words on notation which will be useful.

Notation

We will describe and compare several different algorithms and evaluate their
performance.  In doing so, we will use the following notation:

Suppose p/q = 1/n1 + ... + 1/nk with n1 < n2 < ... < nk
Then define:

D(p,q) = minimal possible value of nk
D(q) = max {D(p,q) | 0 < p < q}
L(p,q) = minimum possible value for k
L(q) = max {L(p,q) | 0 < p < q}

For convenience, we will also define:
Pi = ith prime number, where P1 = 2 (P2 = 3, P3 = 5, etc.)
∏k = P1 · P2 · · · Pk

S = {P2k  | k ≥ 0 and P is a prime}
si = ith smallest element of S

In many of the papers on Egyptian fractions, log2 n is used as shorthand for log
log n.  However, we will not use that convention here.  We will write out log log n.
Thus, when we write log2 n, we mean the logarithm base 2.
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Splitting Method

Probably the worst algorithm for creating a unit fraction expansion is the
splitting method.  It is based on repeated use of the equality

1
x  = 

1
x+1  + 

1
x(x+1) 

which is known as the “splitting relation.”
Given:rational p/q < 1 in lowest terms
Step 1:Write p/q as the sum of p unit fractions 1/q
Step 2:If there are duplicated fractions 1/a in the expansion (for any 
integer a), keep one of them, but remove the other duplicated 
(1/a)’s by applying the splitting relation to them.
Step 3:Repeat Step 2 until an expansion is reached which has no 
denominator duplicated.

An example: 3/7
3
7 =

1
7  + 

1
7  + 

1
7 

=
1
7  + 



1

8 + 
1
56   + 



1

8 + 
1
56  

=
1
7  + 

1
8  + 

1
8  + 

1
56  + 

1
56 

=
1
7  + 

1
8  + 



1

9 + 
1
72   + 

1
56  + 



1

57 + 
1

3192  

=
1
7  + 

1
8  + 

1
9  + 

1
56  + 

1
57  + 

1
72  + 

1
3192 

Campbell [Cam77] proves that this method always works.  The difficulty is in
proving that this method will eventually terminate.  The techniques used to prove this
are beyond the scope of this paper.

The algorithm itself produces expansions which are generally the worst (of those
algorithms presented here).  It is unclear if there are bounds for either L() or D() using
this method.

Fibonacci-Sylvester Algorithm

A much more intuitive, useful algorithm is the Fibonacci-Sylvester algorithm.  It
was first discovered by Fibonacci‡  in 1202 [Dun66], and later by Sylvester [Syl880].  The
algorithm is a straightforward, greedy algorithm.  At each step, we simply take the
largest unit fraction less than whatever is left.  Fibonacci used it (he preferred working
with unit fractions), but did not prove that it worked.  It was not until 1880 that
Sylvester proved its correctness.
                                    
‡  Actually, Fibonacci describes an algorithm with 7 different cases, the last of which is a default case
which is exactly the greedy algorithm.
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Given:rational p/q < 1 in lowest terms
Step 1:assign p’ = p and q’ = q
Step 2:If p’ = 1, let p’/q’ be part of the expansion, and we are done.

Otherwise, use the division algorithm to obtain q’ = sp’ + r,
where r < p’

Step 3:Note that 
p’
q’  = 

1
s+1  + 

p’-r
q’(s+1)  

So let 
1

s+1  be part of the expansion.

Step 4:Let p’ = p’ - r and q’ = q’(s+1)
Step 5:Reduce p’/q’ to lowest terms and go back to step 2

Example: 
3
7 = 

1
3  + 

2
21 

= 
1
3  + 

1
11  + 

1
231 

Theorem
The Fibonacci-Sylvester algorithm is guaranteed to produce an expansion with p or

fewer terms.

proof
The algorithm produces:

p’
q’  = 

1
s+1  + 

p’ - r
q’(s+1) 

Intuitively, we know that the algorithm produces at most p terms because the
numerators always get smaller.  More formally:

Since p’/q’ is in lowest terms, we know that r > 0.
At step 4, we have p’ = p’ - r, so the new p’ ≤ old p’ - 1
At step 2, we stop if p’ = 1, so there can be at most p terms.
Thus, the worst case is where r = 1 each time, and the resulting fraction is always

in lowest terms.  Then the expansion clearly produces p terms.  ∆

In practice, this worst case is seldom reached.  On the other hand, the problem
with this method is that the denominators can grow quite huge.  For example, the
Fibonacci-Sylvester algorithm expands 5/121 as:

5
121  = 

1
25  + 

1
757  + 

1
763309  + 

1
873960180912  + 

1
1527612795642093418846225 

Compare this with the optimal solution,
5

121  = 
1
33  + 

1
121  + 

1
363 

Fibonacci himself recognized this shortcoming, noting that
4
49  = 

1
13  + 

1
319  + 

1
319(637) 

but
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4
49  = 

1
14  + 

1
98 

and suggesting that one should try a smaller first fraction if the first attempt does not
produce an “elegant” solution.  He does not define what elegant is, and this then
becomes less an algorithm and more trial-and-error.

Mays [May87] examines the worst case of the algorithm – cases in which the
expansion requires a terms.  The smallest fractions fitting this category are as follows:

terms a/b
1 1/2
2 2/3
3 3/7
4 4/17
5 5/31
6 6/109
7 7/253
8 8/97
9 9/271
10 10/1621
11 11/199

Mays finds a set of congruences which the b’s must satisfy for the expansion to be
worst.

Golomb’s Algorithm

Golomb [Gol62] describes a simple algorithm which can be used to represent a
rational p/q  as the sum of p or fewer unit fractions.  The algorithm works as follows:

Given:rational p/q < 1 in lowest terms
Step 1:Let p’ = p and q’ = q
Step 2:If p’ = 1, let p’/q’ be part of the expansion, and we are done.
Step 3:Let p’’ be such that p’p’’ = q’r + 1, 0 < p’’ < q’

(p’’ is the multiplicative inverse of p’ modulo q’)

Step 4:Note 
p’
q’  = 

1
p’’q’  + 

r
p’’ 

So let 
1

p’’q’  be part of the expansion.

Step 5:Let q’ = p’’ and p’ = r and go back to step 2

Example: 
3
7 = 

1
3  + 

2
21 

= 
1
3  + 

1
15  + 

1
35 

This algorithm is better than the Fibonacci-Sylvester algorithm in the sense that the
denominators are guaranteed to be at most q(q-1).  The denominators may sometimes
be better for the Fibonacci-Sylvester algorithm, but there is no such bound for the
denominators and, as seen above, in fact can grow quite large.
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Theorem
D(q) < q(q-1) for Golomb Algorithm

proof
Note that at step 3, p’’ < q’, so p’’ ≤ q’-1.
The denominator at step 4 is p’’q’, so the denominator is ≤ (q’-1)q’.
Note that in step 5, we let new q’ = p’’ < old q’, so the q’ is always decreasing.
Thus, the denominators cannot be larger than q(q-1).  ∆
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3 Practical Numbers

It is easily seen that if p can be written as the sum of divisors of q, then p/q can be
expanded with no denominator greater than q itself.  For example, if we want to
expand 9/20, note that 4 and 5 are divisors of 20, so

9
20  = 

4+5
20   = 

1
5  + 

1
4 

In fact, Webb [Web75] proves a theorem by Rav (1966):

Theorem
m/n = 1/x1 + 1/x2 + ...+ 1/xk if and only if there exist positive integers M and N and

divisors D1, ..., Dk of N such that M/N = m/n and D1 + D2 + ... + Dk = 0 (mod M).  Also, the
last condition can be replaced by D1+D2+...+Dk = M; and the condition (D1, D2, ..., Dk) = 1
may be added without affecting the validity of the theorem.

In section 6, we will go through the proof of this theorem.
All of this brings us to what are called practical numbers.  Srinivasan [Sri48] first

defined practical numbers in 1948.  They were also referred to as panarithmic numbers in
[Rob79] and [Hey80].

Definition
A practical number is an integer N such that for all n < N, n can be written as the

sum of distinct divisors of N.

For example, 4 is practical, since 1 = 1, 2 = 2, and 3 = 1 + 2.  On the other hand, 10 is not,
since 4 cannot be written as the sum of 1, 2, 5, and 10.

Relating to Egyptian fractions, the most important property of practical
numbers, proved in [Rob79], is:

Theorem
If n is a practical number and q is any number relatively prime with n, and q < 2n, then

qn is also practical.

So, if we want to expand 5/23, we can note that 12 is practical and thus:
5
23  = 

5(12)
23(12) 

Since 23 < 2(12) and 12 is practical, we know that 23(12) is also practical.  So 5(12)
can be written as the sum of distinct divisors of 23(12).  In fact:

5(12)
23(12)  = 

46 + 12 + 2
23(12)   = 

1
6  + 

1
23  + 

1
138 

Fibonacci almost strikes here again, as he suggested finding a number “which
has in it many divisors like 12, 24, 36, 48, 60, ...” to multiply by.  He fails to present an
algorithm based upon this approach, however (or define which numbers have “many”
divisors).

This type of computation is the basis for several different construction
algorithms, sometimes known as multiplication algorithms – since the expansion is
obtained by multiplying numerator and denominator by the same number.  We will
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first create such an algorithm and prove things about it, then describe some of the most
recent algorithms created.

Before we begin, some properties of practical numbers and references to their
proofs:

If n has divisors 1 = d1 < d2 < ... < dc = n then n is practical if and only if

∑
i=1

r
dr  ≥ dr+1 -1 for all r < c-1 [Rob79]

The above fact is used in the computer programs to test for practicality.
If n has a subset of divisors 1 = d1, d2, ..., dc = n in which each is at most twice the

previous divisor, then n is practical.  [Rob79]
If n is practical and m is a natural number ≤ n then mn is practical.  mknl is also

practical.  [Hey80]
If n is practical and the sum of the divisors of n is at least n+k where k is a non-

negative integer, then n(2n+k+1) is practical.  [Hey80]

Binary Algorithm

We note that if N = 2n then any m < N can be written as the sum of distinct
divisors of N.  We simply write the number in binary notation.  In fact, m can be
written as the sum of n or less divisors, since 2n has exactly n divisors – 20, 21, 22, ..., 2n-1.

For example:
5
16  = 

1 + 4
16   = 

1
16  + 

1
4 

Given:rational p/q < 1 in lowest terms
Step 1:Find Nk-1 < q ≤ Nk where Nk = 2k

Step 2:If q = Nk then simply write out p as the sum of k or less divisors 

of Nk:  p = ∑
i=1

j
di , and get the expansion

p
q  = ∑

i=1

j
di
Nk

  = ∑
i=1

j
1

Nk/di
 

Otherwise, go to step 3.
Step 3:Note that for some integers s and r, where 0 < r < Nk we have:

p
q  = 

pNk
qNk

  = 
qs+r
qNk

  = 
s

Nk
  + 

r
qNk

 

Step 4:Write s = ∑di  where di = distinct divisors of Nk

Write r = ∑di’  where di’ = distinct divisors of Nk

Step 5:Thus get the expansion  ∑1/(Nk/di)  + ∑1/(qNk/di’) 
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For example:
5/21: 16 < 21 < 32
5
21 =

5(32)
21(32) 

=
7(21) + 13 

21(32)  

=
7
32  + 

13
21(32) 

=
1 + 2 + 4

32   + 
1 + 4 + 8
21(32)  

=
1
8  + 

1
16  + 

1
32   + 

1
84  + 

1
168  + 

1
672 

Theorem
The Binary Algorithm is guaranteed to produce an expansion with D(n) < n2 and L(n) =

O(log n).

proof
First, we prove the algorithm works in the first place.

In step 2, note that p < q < Nk so pNk < qNk
qs + r = pNk < qNk

so s < Nk.
Thus, we can always find an expansion for both s and r.  The resulting

denominators of the expansion are distinct because q divides the second set of
denominators (corresponding to r).  It cannot divide the denominators corresponding
to s unless q is a power of 2.  But if it were, we never would have gotten past step 2.  So
the algorithm at least works.

In the case where q = Nk, the expansion clearly has at most k terms.
In the case where q < Nk, the expansion has at most 2k terms.  Since k = log2 Nk, it
follows that there are at most 2log q terms in the expansion.  Thus, L(n) = O(log n).

In the case where q = Nk, the largest denominator is clearly q.  In the case where
q < Nk, the largest denominator can be q · Nk, so the largest denominator must be at
most q(q-1).  Thus, D(n) = O(n2).  ∆

Bleicher/Erdös Algorithm

Note that while 2n is a simple number, it is not the best choice for a practical number.
Numbers of the form 2n are the practical numbers with the fewest number of divisors.
This causes the bound for the number of terms in an expansion to be log q.  Clearly, if
our practical number has more divisors, a numerator might be written as the sum of
fewer divisors, thus lowering the bound for the number of terms.  To increase the
number of divisors, we can avoid duplicating factors in our practical number.  Bleicher
and Erdös take this approach in their algorithm of 1976 [Ble76a], where they define Nk
= ∏k.
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Given:rational p/q < 1 in lowest terms
Step 1:Find k such that Nk-1 < q ≤ Nk
Step 2:If q | Nk then p/q = b/Nk and we can write b = ∑ di where all

di | Nk
Step 3:If not, then p/q = pNk/qNk = (sq + r)/qNk = s/Nk+ r/qNk

where we make the restriction
Nk(1-1/k) ≤ r ≤ Nk(2-1/k)

The term s/Nk can be done as with b/Nk
We find an expansion for r and multiply the denominators by q.

An example:
5/121:  Thus, k = 4 and Nk = 2 · 3 · 5 · 7

5
121 = 

(2 · 3 · 5 · 7) · 5
(2 · 3 · 5 · 7) · 121 

Note Nk(1-1/k) = 315/2 = 157.5
and Nk(2-1/k) = 735/2 = 367.5

Noting 5 · (2 · 3 · 5 · 7)/121 = about 8.7, we let q = 7 and
aNk = 7 · 121 + 203

Thus 
5

121  = 
7

2 · 3 · 5 · 7  + 
203

(2 · 3 · 5 · 7) · 121 

= 
1
30  + 

29
(2 · 3 · 5) · 121 

= 
1
30  + 

3 + 5 + 6 + 15
(2 · 3 · 5) · 121 

= 
1
30  + 

1
1210  + 

1
726  + 

1
605  + 

1
242 

= 
1
30  + 

1
242  + 

1
605  + 

1
726  + 

1
1210 

Theorem
For the Bleicher/Erdös algorithm, D(N) = O(N(log N)3)

proof
We can easily prove by induction, using the first theorem on practical numbers, that the
∏k are practical.  However, Bleicher and Erdös prove an even stronger statement:

Lemma 1
Any positive integer n ≤ σ(∏k) can be written as the sum of distinct divisors of

∏k.  Here, σ(n) denotes the sum of divisors of n, and it is obvious that σ(n) > n.

The proof is by induction on k.
i)  The lemma is easily shown to be true for k = 0, 1, 2.  For example, for k = 2, we

have ∏k = 6 and σ(∏k) = 1 + 2 + 3 + 6 = 12.  So note that 4 = 1 + 3, 5 = 2 + 3, 7 = 6 + 1, 8 =
6 + 2, 9 = 6 + 3, 10 = 6 + 3 + 1, and 11 = 6 + 3 + 2.
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ii)  Suppose the lemma is true for 0, 1, 2, ..., k-1.  If n ≤ σ(∏k-1) we are clearly
done.  So assume σ(∏k-1) < n ≤ σ(∏k).  Note that:

σ(∏k) = σ(∏k-1) x (Pk + 1)
σ(∏k) - σ(∏k-1) = Pk x σ(∏k-1)

Therefore,
n - σ(∏k-1) ≤ σ(∏k) - σ(∏k-1) = Pk x σ(∏k-1)

n - Pk x σ(∏k-1) ≤ σ(∏k-1)
And for k ≥ 3, we have

n > σ(∏k-1) ≥ 2Pk-1 > Pk
So we can find an integer s such that

0 < n-sPk ≤ σ(∏k-1)
and

0 < s ≤ σ(∏k-1)
So, since the lemma is true for k-1, we can write

s = ∑di’ 

and
n-sPk = ∑di 

where di and di’ are divisors of ∏k-1 and the di’ are distinct and the di are distinct.
But then, since Pk |/  ∏k-1 we have that:

n =  ∑(Pkdi’)  +  ∑di 

is the desired representation of n.  ◊

Lemma 2
Let P be a prime and k an integer with 0 ≤ k < P.  Given any k integers {x1, x2, ...,

xk} none of which is divisible by P, then the 2k sums of subsets of {x1, x2, ..., xk} lie in at
least k+1 distinct congruence classes mod P.

Again, Bleicher and Erdös use induction on k.
i)  If k = 0, then there is just one sum – 0.  So it is true for k = 0.
ii)  Suppose it is true for k-1.  Then let n = the number of distinct congruence

classes mod P resulting from the sums of subsets of {x1, x2, ..., xk-1}.  We know n ≥ (k-
1)+1 = k.  If n > k, we are done.  So assume n = k.  Now calculate the sums resulting
from adding xk to all the sums.  If a new congruence class is obtained, we are done.  If
not, then observe that if we let xk+P = ... = xk+2 = xk+1 = xk, and if we add them one  at a
time, we still have just k congruence classes.  But this is impossible, since P is a prime
and P does not divide xk.  ◊

Lemma 3
If r is any integer satisfying Nk(1-1/k) ≤ r ≤ Nk(2-1/k) then there are distinct

divisors di of Nk such that
1.  r = ∑di 

2.  di ≥ cNk-3 for some constant c
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The proof of this lemma is lengthy and complicated and will not be shown, but involves
induction on k and the use of lemma 2.  ◊

Lemma 4
If Nk-1 ≤ N ≤ Nk then

k ≤ 
ln N

 ln ln N 





1 + 
ln ln ln N
ln ln N  

Again, we omit the proof.  ◊

Now, we prove the original theorem.
If q | Nk, then it is clear that no denominator is greater than Nk.
If not, then in step 3 the denominators associated with the s/Nk term are clearly

also no greater than Nk, and we are clearly done.
For the r/qNk term, note that lemma 3 allows us to write r = ∑di  with all the di

≥ cNk-3.  So the denominators are at most qNk/cNk-3 = qPkPk-1Pk-2/c.  By lemma 4,
this is ≤ q(ln q)3/c = O(q(log q)3).  ∆

In 1986, Yokota [Yok86b] modified the algorithm slightly, letting r be such that:
(1-2/ Pk )∏k ≤ r < 2∏k

Using this modified algorithm, Yokota proves that:

L(N) ≤ 
4log N

log log N 





1 + 
log log log N

log log N  

and
D(N) ≤ λN(log N)2

where λ → 1 as n → ∞.
The proof is long and is omitted.

To find out how many terms there are, we must find out how many terms we
need to write N < ∏k as the sum of divisors of ∏k.

To that end, before continuing with the Yokota algorithm, we will first discuss
how Goldbach’s conjecture might be used in Egyptian fractions.

Goldbach’s Conjecture

Here we would like to suggest a possible use for Goldbach’s conjecture in Egyptian
fractions.  It is not immediately obvious that it is helpful, but we will describe how it
might be used.

Goldbach’s conjecture‡  , formulated in 1742 is that:

Every even integer > 2 is the sum of two primes.

                                    
‡  Actually, Goldbach conjectured in a letter to Euler that every integer n > 5 is the sum of three
primes.  Euler noted the clear equivalence to the stated conjecture.
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This has not been proven, but has been shown to be true for 2n up to 108 by Stein &
Stein in 1965.  [Rib89]

Also, Chen has proved that:

Theorem
Every sufficiently large even integer 2n may be written as 2n = p + m where p is a prime

and m is the product of two (not necessarily distinct) primes.

Finally, Vinograd proved in 1937 [Rib89] that:

Theorem

There exists n0 such that every odd n ≥ n0 is the sum of 3 primes.  n0 = 3315  works.

So there is some strong evidence that Goldbach’s conjecture is true, or at least
that we can write a number as the sum of a fixed number of primes.

If we assume Goldbach’s conjecture, then suppose we have a number n < Pk.  If
n is odd, we can write it as n = Pa  + Pb where a,b < k.  If the primes are not distinct and
we have n = Pa  + Pa , then we can write n = 2Pa  = P1Pa .  If n is even, then we can write n
= m + 1 where m is odd and thus n = Pa  + Pb + 1 or n = P1Pa  + 1.  So n can be written as
the sum of 3 or less divisors of ∏k.

Note also that if we have n < P
2
k  then we can write n = sPk + r with s, r < Pk.

This means that we can write n as the sum of 6 or less divisors of ∏k.
So perhaps this can be used to create an upper bound on the number of terms

required to write n < ∏k as the sum of distinct divisors of ∏k.
Yokota [Yok86b] proves the very good result that:

Theorem
If n < ∏k then n can be written as the sum of 2k or fewer divisors of ∏k.

The proof of this theorem is beyond the scope of this paper, involving a theorem
about the Mobius function to prove that about half the numbers less than Pk are
square-free, and the Cauchy-Davenport Theorem.  The proof is done by induction on k.

But even this good result is not perfect.
It turns out that the number of terms required grows very slowly.  A computer

was used to calculate the number of terms required (see Appendix C),
From those calculations, it looks as if approximately k terms are required, rather

than 2k, but it is hard to tell with such little data.  It could possibly be asymptotically
smaller than k.

Now back to the algorithms.

Yokota Algorithm
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The Yokota Algorithm [Yok88a] is another algorithm like the binary algorithm.
It defines Nk differently, however, to get very good asymptotic results.

Define:  Nk = ∏
i=1

k
si 

Given:rational a/N < 1 in lowest terms
Step 1:we find k such that Nk-1 ≤ N < Nk
Step 2:If N | Nk then a/N = b/Nk and we can write b = ∑ di where all

di | Nk
Step 3:If not, then a/N = aNk/NNk = (sN + r)/NNk = s/Nk+ r/NNk

where (1-2/ sk )Nk ≤ r < 2Nk (and 1 ≤ s < Nk)
The term s/Nk can be done as with b/Nk
We can find an expansion for r and multiply the denominators 

by N.

An example:
Note the set S = {2, 3, 4, 5, 7, 9, 11, 13, 16, ...}
So N1 = 2, N2 = 6, N3 = 24, N4 = 120, N5 = 840, etc.

16/17:  Thus, k = 3 and Nk = 2 · 3 · 4 = 24
16
17 = 

16(24)
17(24) 

= 
[22(17)+10]

17(24)  

note (1-2/ s3 )N3 = 0, so this is what we want.  Continuing:

= 
22
24  + 

10
17(24) 

22
24 = 

12+8+2
24  = 

1
2  + 

1
3  + 

1
12 

10
17(24) = 

8+2
17(24) = 

1
17(3)  + 

1
17(12) 

16
17  =  

1
2  + 

1
3  + 

1
12  + 

1
51  + 

1
204 

This algorithm ensures that

L(N) ≤ 
2 log N

 log log N 





1 + 
2 log log log log N

 log log log N  

and
D(N) ≤ N(log N)2+ε

where ε → 0 as N → ∞.

The proof of the bounds is rather complicated, so we will simply prove that the
algorithm works.  To do so, it clearly suffices to show:

Theorem
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If Nk = ∏
i=1

k
si  and r < 2Nk, then r can be written as the sum of distinct divisors of

Nk.

proof
The proof is almost identical to Lemma 1 for the Bleicher/Erdös algorithm.
The proof is by induction on k.
i)  The theorem is easily shown to be true for k = 0, 1, or 2.  For example, if k = 2,

we have Nk = 6 and 2Nk = 12.  So note that 4 = 1 + 3, 5 = 2 + 3, 7 = 6 + 1, 8 = 6 + 2, 9 = 6 +
3, 10 = 6 + 3 + 1, and 11 = 6 + 3 + 2.

ii)  Suppose the theorem is true for 0, 1, 2, ..., k-1.  If n < 2Nk-1 we are clearly
done.  So assume 2Nk-1 ≤ n < 2Nk.  Note that:

2Nk = 2Nk-1 · sk
So, find s, r such that

n = s · sk + r
with sk ≤ r < 2sk

Clearly,
r < 2sk < 2Nk-1 for k > 2

and
s ≤ 2(Nk-1 - 1) < 2Nk-1

So we can write
s = ∑di’ 

and
r = ∑di 

where di and di’ are divisors of Nk-1 and the di’ are distinct and the di are distinct.
But then, since sk |/  Nk-1 we have that:

n =  ∑(skdi’)  +  ∑di 

which is the desired representation of n.  ◊

Now we will turn to the Tenenbaum/Yokota algorithm, which gives “optimal”
asymptotic bounds.

Tenenbaum/Yokota Algorithm

The Tenenbaum/Yokota Algorithm [Ten90] is very similar to the Bleicher/Erdös
algorithm.  It uses the same definition for Nk and is identical for the s/Nk part.  So it is
asymptotically the same as the Bleicher/Erdös algorithm in the number of terms.
However, its handling of the r/NNk part is different, yielding a solution with
asymptotically smaller denominators.

Define:  Nk = ∏k
Given:rational a/N < 1 in lowest terms
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Step 1:we find k such that Nk-1 ≤ N < Nk
Step 2:If N | Nk then a/N = b/Nk and we can write b = ∑ di where all

di | Nk
Step 3:If not, then a/N = aNk/NNk = (sN + r)/NNk = s/Nk+ r/NNk

where Nk ≤ r < 2Nk (and 0 ≤ s < Nk)
The term s/Nk can be done as with b/Nk
We find an expansion for r/Nk as follows:

r/Nk = r*/∏
j=1

n
sj where sn = pk

We can thus find an expansion for this fraction, and multiply
 the denominators by N.

An example:
16/17:  Thus, k = 3 and Nk = 2 · 3 · 5 = 30

16
17 = 

16(30)
17(30) 

= 
[26(17)+38]

17(30)  

= 
26
30  + 

38
17(30) 

26
30 = 

15+10+1
30  = 

1
2  + 

1
3  + 

1
30 

Note s4 = 5 = pk
38
30 =

152
2·3·4·5 

=
120+30+2

120  

=
1
1  + 

1
4  + 

1
60 

16
17  =  

1
2  + 

1
3  + 

1
30  + 

1
17  + 

1
68  + 

1
1020 

This algorithm ensures that
D(N) ≤ 4N(log N)2 log log N

and
P(N) ≤ (1+ε)(log N)/(log log N).

This is best in the sense that no algorithm can yield both
L(P) ≤ clog P / log log P

and
D(P) ≤ P(log P)1 + 1/c - e

(see section 5 for the proof of this bound).

The proof of the bounds for L(N) and D(N) involve Yokota’s earlier results.  Again, the
proof for the bounds is fairly complicated.  The theorem used to prove that Yokota’s
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algorithm works is sufficient to prove that the Tenenbaum/Yokota algorithm also
works.

“Optimal” Practical Number Algorithm

The proofs for the bounds of the last three algorithms are very complex.  It
would be nice to have a simple algorithm which gave good results with a simple proof.
To this end, we can attempt to devise a somewhat “optimal” algorithm using practical
numbers as follows:

Given p/q in lowest terms
Step 1:Set M = 1
Step 2:If qM is not practical, let M = M+1 and repeat step 2; otherwise:
Step 3:Note p/q = pM/qM and find an obvious expansion.

Note that in Step 2, we can instead test to see if pM can be written as the sum of distinct
divisors of qM.  However, in finding asymptotic results, we will have to take the worst
case for p – thus, testing for practicality is more general.

Clearly, this algorithm will terminate because, if nothing else, we can increment
M until we reach 2k ≥ q (the binary algorithm).

The obvious question is, what is the lowest value for M?  If we knew
asymptotically what the lowest value for M was, then we would have a pretty good
asymptotic bound for the largest denominator in the best expansion.  It would not
necessarily be the best (in terms of D(N)) expansion, unless we describe some way of
picking the best divisors.

If we let M(N) = smallest m such that mN is practical, then we can say:
D(N) ≤ N · M(N)

So if we can find a bound for M(N), we can also find an upper bound for D(N).
Appendix C shows computer calculations for M(P) for values of P up to 80000.  M(N)
appears to grow somewhere between O(log N) and O(N).  Perhaps there is some way
of using the properties of practical numbers to prove some bound for M(N).

In calculating the value of M(P) with the computer, we make use of the following
theorem:

Theorem
M(Pi) ≤ M(Pj)   for i < j

proof
Suppose M(Pj) = m.
In the general case, take a number n < mPi < mPj
Find r,s such that n = sPi + r with 0 ≤ r < Pi < Pj
Since r < Pj, we can write r as the sum of distinct divisors of m.
s < (n-r)/Pi < n/Pi < m
We assume m < pj (this is clearly true for large enough j).
So we can write s as the sum of distinct divisors of m.
Thus, since m and Pi are relatively prime, we can write n as the sum of distinct

divisors of mPi.
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Therefore, M(Pi) ≤ m = M(Pj)
M(Pi) ≤ M(Pj)  ∆
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4 Other Algorithms

The following are some other algorithms which we will basically just describe.  They
are listed here to show the broader range of algorithms available.

Factorial Algorithm

The following produces a denominator-minimal expansion [Cam77], but is not
the best algorithm in the world since it takes a very large amount of time to run.  It also
fails to give any useful asymptotic results.

Given:rational p/q < 1 in lowest terms
Step 0:Set n to 1
Step 1:Set M to n!
Step 2:Multiply p and q by M
Step 3:List all divisors of qM
Step 4:List all collections of distinct divisors whose some is pM
Step 5:If there is no such collection, increase n by 1 and go back to step 1
Step 6:Among the collections, select one with greatest minimum 
divisor
Step 7:Use the selected divisors as numerators of fractions with

denominator qM
Step 8:Reduce the fractions to lowest terms to create an expansion
Step 9:If n = q(q-1) go to step 10, otherwise increase n by 1 and go to step 
1
Step 10: Among the expansions saved at step 8, choose one with smallest 

denominator

Erdös [Erd50] proves that this produces an expansion with no more than 2n-2
terms, where (n-1)! < b ≤ n!

Farey Series Algorithm

The Farey Series Algorithm uses the Farey Series to produce an expansion of
p/q with at most p terms, and no denominator greater than q(q-1).  [Bec69]

The Farey Series of order n, Fn, consists of all the reduced fractions a/b with 0 ≤ a
≤ b ≤ n, arranged in increasing order.  This series has the property that if a/b and c/d
are adjacent fractions in Fn, and a/b < c/d, then c/d - a/b = 1/bd and b ≠ d.

Given:rational p/q < 1 in lowest terms
Step 1:assign p’ = p and q’ = q
Step 2:Find r/s, the fraction adjacent to p’/q’ in the Farey series, with

r/s < p’/q’  If none exists, then add p’/q’ to the expansion, and we
are done.

Step 3:Note 
p’
q’  = 

1
q’s  + 

r
s 
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So let 
1

q’s  be part of the expansion

Step 4:Let p’ = r and q’ = s and go back to step 2

Example: 
3
7  = 

1
3  + 

2
21 

= 
1
3  + 

1
15  + 

1
35 

The Farey Series algorithm appears to give the same results as the Golomb Algorithm.
Why?  In the Farey Series, we have r/s < p/q; in fact, p/q - r/s = 1/qs ⇒ ps - qr = 1 ⇒
ps = qr + 1, which is precisely the Golomb algorithm.

Continued Fraction Algorithm

Bleicher [Ble72] describes an algorithm based on the continued fraction of
p/q = [0; a1, a2, ..., an].

Using it, he proves D(N) < N(N-1), and L(N) ≤ min (
2(ln q)2
ln  ln q  , 1+a2+a4+...+an*) where an*

= 2[n/2].
Unfortunately, the algorithm is somewhat complicated, and the proof of the

bounds is almost 40 pages.

Algorithm Comparison

There are three basic measures of an expansion:
1)  the number of terms (length)
2)  the maximum denominator
3)  the number of characters required to write the expansion.  For 

example, 1/2 + 1/3 can be written using 3 characters:  2,3 (since 
we know all numerators are 1)  This is a combination of length 
and the size of the denominators.
A computer was used to compare four algorithms:  Fibonacci-Sylvester, Golomb,

Bleicher/Erdös, and Tenenbaum/Yokota.
The algorithms were compared using all three criteria, on prime denominators

from 2 to 2002, and all corresponding numerators (all such proper rationals).
The results are listed in Appendix C.
The sample is probably too small to derive any real conclusions, but some

interesting observations can be made.
In the length category, the Golomb algorithm was horrible, while the Fibonacci-

Sylvester algorithm seemed asymptotically similar to the other two.  On the other
hand, the Fibonacci-Sylvester algorithm was better than the other two most of the time
-- averaging rougly 35% fewer terms, and as good as or better than them about 95% of
the time.  The Bleicher/Erdös and Tenenbaum/Yokota algorithms were only the best
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about 10% of the time.  So perhaps the Fibonacci-Sylvester algorithm can produce a
better bound for L(N).  Because of its erratic nature, not much has been proved about it.

In the denominator category, the Fibonacci-Sylvester algorithm, as expected,
performed horribly.  The Golomb algorithm, however, did very well compared with
the other two.  This is probably due to the relatively small denominators, however.
The asymptotic bounds for the other two algorithms are known to be much better.

In the overall character category, the Bleicher/Erdös and Tenenbaum/Yokota
algorithms are clearly superior.  From appearances, it would appear that the
Bleicher/Erdös algorithm is slightly better.  This may be due to the small sample, or
perhaps it simply is better.  The proven bounds for the Tenenbaum/Yokota algorithm
are better, but this does not mean that the actual bounds are.
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5 Length and Denominator Bounds

Construction algorithms tells us how to find expansions and what asymptotic results
we can achieve.  If we want, however, to know what we can’t achieve, then
construction algorithms are of no use.

Denominator Bounds

Bleicher and Erdös [Ble76a] prove the remarkable result that D(N) = Ω(N log N).  We
will try to provide greater detail than Bleicher and Erdös do in their original proof.

Theorem
D(N) = Ω(N log N)

proof
Let P be a prime.
Let x1 < x2 < ... < xt be distinct integers which occur in any unit fraction expansion

of a/P < 1, where all the xi are divisible by P.
Define xi’ by:  xi’P = xi.
Clearly, if xi’ ≥ P, then xi ≥ P2, and we are done (we would have D(P) ≥ P2).  So

assume that xi’ < P.
Now, for a given a, write

a
P  = 

1
xi1

  + 
1

xi2
  + ... + 

1
xij

  + 
1
y1

  + ... + 
1
yk

 

where only the P | xin, but P |/  yn.
Thus:

a
P  = 



1

P  



1

xi1’ + 
1

xi2’ + ... + 
1

xij’
  + 



1

y1
 + ... + 

1
yk

 

a
P  = 



1

P  



b

c   + 



1

y1
 + ... + 

1
yk

 

where c = ∏
n=1

j
xin’ and b = ∑

n=1

j

∏
m≠n

xim’ 

a
P  - 



1

P  



b

c   = 



1

y1
 + ... + 

1
yk

 

ca - b
cP   = 



1

y1
 + ... + 

1
yk

 

Since P |/  yn, we must have P | (ca - b), thus ca - b ≡ 0 (mod P).
Since xin’ < P, we know c ≡/  0 (mod P), so for every different value of a, there

must be different values for b and c to make that congruence true (since P is prime).  
Different values for b and c correspond to a different set of {xi1’, xi2’, ..., xij’}.
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Since these xin’ are taken from the set {x1’, x2’, ..., xt’}, there are at most 2t-1 possible
values for (b,c) (since we must take at least one from the set).

There are P-1 possible values for a, and thus we need P-1 possible values for
(b,c), which means we need

2t-1 ≥ P-1
2t ≥ P

t ≥ log2 P
Since the xi are distinct, so are the xi’.  Therefore,

xt’ ≥ log2P
xt ≥ Plog2P

Thus, D(P) ≥ Plog2P.  So D(N) = Ω(N log N).  ∆

In 1976, Bleicher and Erdös [Ble76a] state:
“There is both theoretical and computational evidence to indicate that D(N)/N is

maximum when N is a prime.”
In 1986, Yokota [Yok86a] proves this by proving:

Theorem
For every N,

D(N)
N   ≤ 

D(P)
P  

for some prime P that divides N.

Actually, Yokota first proves the more general result that D(MN) ≤ MD(N), and the
theorem follows easily:

If N = p1p2...pn where p1 ≤ p2 ≤ ... ≤ pn then
D(N)

N   ≤ 
p1D(N/p1)

N   = 
D(N/p1)

N/p1
  ≤ ... ≤ 

D(pn)
pn

  

 ∆

This helps in proving upper bounds, as we only need to examine the case D(P).
For example, if we can find the xi for the above proof, then xt is a bound for the
denominators.

In 1988, Yokota [Yok88b] proves:

Theorem
D(N) ≤ N(log N)1 + δ(N)

where δ(N) → 0 as N → ∞

Yokota proves this by using ∏
i=1

t
si  and proving that a certain subset of divisors of that

number contains all residues modulo st.  The proof itself is very detailed and will not be
shown.  An algorithm, per se, can’t really be extracted from the proof because the proof
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only deals explicitly with D(P).  So an algorithm based on the proof would only apply to
rationals with prime denominators.  That doesn’t, however, lessen the result.

In [Ble76b], Bleicher and Erdös show:

Theorem
For a prime P with log2r P ≥ 1

D(P) ≥ (Plog P log log P) / (logr+1 P ∏
j=4

r+1
logj P )

Only for this result, logx P means the xth log of P.  Thus, log3 P = log log log P.

Of course this can be generalized to D(N).

proof

To prove the theorem, they first define:

Definition

S(N) = the number of distinct possible values of ∑
k=1

n
εk/k  where εk = 0 or 1.

Basically, this means that given the fractions 1, 
1
2 , 

1
3 , 

1
4 , ..., 

1
N , S(N) is the

number of different sums we can get by adding some of those fractions
together.

Bleicher and Erdös then prove the following lemma:

Lemma
For r ≥ 1 and log2r N ≥ 1,

S(N) ≤ exp








(Nlogr N)

(log 2 N log2 N)
 ∏
j=1

r
logj N  

With this lemma, it isn’t too hard to modify the proof that D(N) = Ω(N log N) to use this
bound for S(N) to prove this theorem.  ∆

Length Bounds

Vose [Vos85] proves:

Theorem
 L(N) = O( log N )
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proof

Lemma
There exists an increasing sequence Nk of positive integers such that any integer

1 < m < Nk is the sum of not more than O( log Nk-1 ) distinct divisors of Nk.

The proof of the lemma is long and complicated.  The Nk aren’t too complicated – they
are defined as:

Nk = 4αk2 ∏
l=2

k

p
2
l
 

where p2 < p3 < ... are odd primes and α is any “sufficiently large integer.”
The pi’s are not ith primes, however, and must be chosen in a special manner.  ◊

Once we have the lemma, we basically use the same type of reasoning we have used so
many times before:

Given 0 < a/b < 1 choose integers k and l such that
Nk-1 < b ≤ Nk and l/Nk ≤ a/b < (l+1)/Nk.

aNk - bl < b ≤ Nk and l < Nk.
By the lemma, we can say:

aNk - bl = d1 + d2 + ... + dr and l = d’1 + ... + d’s,

where di and d’j are divisors of Nk.  (and r and s are O( log Nk-1 ))  Now define
integers ui and v’j:

ui = Nkb/di vj = Nk/d’j
Since dr ≤ aNk - bl < b, it follows that v1 ≤ Nk < Nkb/dr = ur.  This proves that

vs < ... < v1 < ur < ... < u1 provided d1 < ...  < dr and d’1 < ... < d’s.  Then
1/v1 + ... + 1/vs + 1/u1 + ... + 1/ur = 1/Nk(1 + (aNk-bl)/b) = a/b

And thus n ≤ r+s = 2 O( log Nk-1 ) = O( log b ).  ∆

It is perhaps intuitive, but not obvious, that log n  < log n / log log n, so we will prove
it.

Theorem
O( log n ) < O(log n / log log n)

proof
Clearly, O(ba) > O(a2) for sufficiently large a.
O(a2) < O(ba)
O(log2x) < O(x)
O(x) < O(x2 / log2 x)
O( x ) < O(x / log x)
O( log n ) < O(log n / log log n)  ∆
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We have not seen any references to any lower bound on the number of terms.
This would be a bound on the inverse of the function E(t) described earlier.

Length/Denominator Bounds

There are also bounds involving both length and denominator.  In 1986, Yokota
proves:

Theorem
Suppose P is a large prime.  Then there is no algorithm which yields both

L(P) ≤ clog P/log log P
and

D(P) ≤ P(log P)1+1/(c+ε) for ε > 0

proof
Yokota uses the following lemma:

Lemma
Let M be a large number.  If t ≤ (log M)1 + 1/(c+ε) for ε > 0, then





t

0   + 



t

1   + ... + 



              t

[clog M/log log M]   < M

The proof of the lemma involves algebra and Stirling’s formula.  ◊

Yokota uses a technique similar to the one used to prove the lower bound for D(N).
We will deviate slightly from Yokota’s proof to remain consistent.

Suppose that we can write a/P as the sum of k unit fractions, with k ≤ clog P/log
log P and the largest denominator ≤ P(log P)1+1/(c+ε) for ε > 0.

Then, using the notation of the proof for D(N), we note that we must have xt ≤
P(log P)1+1/(c+ε).

We still need (P-1) different (b,c) pair, but they correspond to subsets of size ≤
clog P/log log P (rather than any size subset).  The total set has size t.  So the number of
such subsets is clearly





t

1   + 



t

2   + ... + 



              t

[clog P/log log P]  

Since we need P-1 (b,c) pairs, we need





t

1   + 



t

2   + ... + 



              t

[clog P/log log P]   ≥ P-1

But since the xi are distinct, it is clear that
tP ≤ xt

But then
tP ≤ P(log P)1+1/(c+ε)

t ≤ (log P)1+1/(c+ε)
and thus, by the lemma, we have
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t

0   + 



t

1   + ... + 



              t

[clog P/log log P]   < P





t

1   + 



t

2   + ... + 



              t

[clog P/log log P]   < P-1

This is an obvious contradiction.  ∆

The following is a table of all the upper and lower asymptotic bounds.

Lower Bound Upper Bound

D(N) N log N N(log N)1+δ(N)

Bleicher/Erdös 1976 Yokota 1988

(Nlog N log log N) / (logr+1 N ∏
j=4

r+1
logj N 

Bleicher/Erdös 1976

L(N) 1 log N 
Vose 1985

Both
D(N) N(log N)1+1/(c+ε) for ε > 0 N(log N)2 log log N
L(N) clog P/log log P (1+ε)(log N)/(log log N)

Yokota 1986 Tenenbaum/Yokota 1990
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6 Problems Involving a Fixed Number of Terms

We now move from construction algorithms to Diophantine equations.  If we fix the
number of terms allowed in an Egyptian fraction expansion, we discover some very
interesting problems.

If we fix the number of terms to a constant number, then we simply have a
specific case of Rav’s theorem stated earlier (for some value of k).  The interesting
questions involve fixing both the numerator and the number of terms.  But first, we will
repeat the theorem and go over the proof:

Theorem
m/n = 1/x1 + 1/x2 + ...+ 1/xk if and only if there exist positive integers M and N and

divisors D1, ..., Dk of N such that M/N = m/n and D1 + D2 + ... + Dk = 0 (mod M).  Also, the
last condition can be replaced by D1+D2+...+Dk = M; and the condition (D1, D2, ..., Dk) = 1
may be added without affecting the validity of the theorem.

proof
First, suppose M and N exist which satisfy the given conditions.  Then we simply have

m
n   = 

M
N  = 

D1 + D2 + ... + Dk
 cN   = 

1
cN/D1

  + 
1

cN/D2
  + ... + 

1
cN/Dk

 

On the other hand, suppose m/n = 1/x1 + 1/x2 + ... + 1/xk is solvable.  Then

m
n   = ∑

i=1

k
1
xi

  = 

∑
i=1

k
x1 · · · xi-1xi+1 · · · xk

x1x2 · · ·xk
  = 

M
N 

Clearly, then, M = D1 + D2 + ... + Dk, where the Di all divide N.  And we are done.
If (D1, D2, ..., Dk) = d ≠ 1, then we simply take M/d and N/d instead.  ∆

The 4/n Problem

The outstanding unsolved question of Egyptian fractions concerns the case 4/n  Can a
proper fraction 4/n always be expressed with 3 or fewer terms?  In other words, can
the Diophantine equation

4
n  = 

1
a  + 

1
b  + 

1
c 

always be solved in positive integers for any integral value of n greater than 4?
Erdös and Straus believe it can always be solved.  It has been verified for very

large values of n, but never proved.  Nicola Franceschine has verified the conjecture for
n ≤ 108.  Mordell [Mor69] has shown it is true, except possibly in cases where n is prime
and congruent to 12, 112, 132, 172, 192, or 232 (mod 840).

Vaughan [Vau70] has shown that if Ea(N) is the number of natural numbers n
not exceeding N for which more than 3 terms are needed to express a/n, then Ea(N) «
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N exp { - (log N)2/3 / C(a) }  Most of the asymptotic results in this area use sieve
methods.

To provide a flavor of the problem, we will go through Mordell’s result in great
detail.

Theorem
4/n = 1/a  1/b + 1/c (EQ 1)

is solvable in positive integers for any integer n > 4 where n
≡/  12, 112, 132, 172, 192, or 232 (mod 840) 

proof

It will be useful to use the following two equations:
Note that if na + b + c = 4abcd (EQ 2)

then 1/bcd + 1/acdn + 1/abdn = 4/n

Lemma 1
If the (EQ 1) is solvable for n, then it is also solvable for all multiples of n.

Suppose that 4/n = 1/a + 1/b + 1/c.  Then 4/mn = 1/ma + 1/mb + 1/mc.  ◊

Lemma 2
(EQ 1) is solvable for all n ≡/  1 (mod 4) 

Clearly, if n = 4a, then 4/n = 1/a, so 4/n is expressible as a single unit fraction (and,
trivially, also as the sum of three unit fractions by the splitting relation).  Thus, (EQ 1) is
solvable for n ≡ 0 (mod 4).

In (EQ 2), if we let a = 2, b = 1, and c = 1, then we have
2n + 1 + 1 = 8d

so
n = 4d-1

Thus, if we allow d to range over the integers, we find that 4/n is always expressible as
the sum of 3 unit fractions.  In other words, (EQ 1) is solvable for n ≡ 3 (mod 4).

Similarly, note that if we let a = 1, b = 1, and c = 1, then we have
n + 1 + 1 = 4d

so
n = 4d - 2

Thus, (EQ 1) is solvable for n ≡ 2 (mod 4).
Thus, (EQ 1) is solvable for n ≡/  1 (mod 4).  ◊

Lemma 3
(EQ 1) is solvable for all n ≡/  1 (mod 8) 

In (EQ 2), if we let a = 1, b = 1, and c = 2, then we have
n + 1 + 2 = 8d

so
n = 8d -3

Thus, (EQ 1) is solvable for all n ≡ 5 (mod 8).
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By Lemma 2, (EQ1) is solvable for all n ≡/ 1 (mod 4), which means n ≡/ 1 or 5 (mod 8). 
Thus, (EQ 1) is solvable for all n ≡/ 1 (mod 8).  ◊ 

Lemma 4
(EQ 1) is solvable for all n ≡/  1 (mod 3) 

From (EQ 2), we have
na + b + c = 4abcd
na + b = 4abcd - c = c(4abd - 1)
na + b = (4abd - 1)c (EQ 3)

If we let a = b = d = 1, then we have
n + 1 = 3c
n = 3c - 1

Thus, (EQ 1) is solvable for n ≡ 2 (mod 3).
Note that 4/3 = 1/1 + 1/4 + 1/12.
Thus, by Lemma 1, (EQ 1) is solvable for n ≡ 0 (mod 3).
Thus, (EQ 1) is solvable for all n ≡/ 1 (mod 3).  ◊ 

Lemma 5
(EQ 1) is solvable for all n ≡/  1, 2, or 4 (mod 7) 

From (EQ 3), if we take a = 1, b = 2, d = 1, then
n + 2 = 7c ⇒ n = 7c -2 ⇒ n ≡ 5 (mod 7)

If a = 2, b = 1, d = 1, then
2n + 1 = 7c ⇒ 2n = 7c - 1 ⇒ 2n = 6 (mod 7) ⇒  n ≡ 3 (mod 7)

If a = 1, b = 1, d = 2, then
n + 1 = 7c ⇒ n = 7c - 1 ⇒ n ≡ 6 (mod 7)

Thus, (EQ 1) is solvable for n ≡  3, 5, or 6 (mod 7).
Noting that 4/7 = 1/2 + 1/15 + 1/210, lemma 1 tells us that (EQ 1) is also solvable for n
≡  0 (mod 7).
Thus, (EQ 1) is solvable for all n ≡/ 1, 2, or 4 (mod 7).  ◊ 

Lemma 6
(EQ 1) is solvable for all n ≡/  1 or 4 (mod 5) 

Lemma 4 tells us that (EQ 1) is solvable for all n
≡/ 1 (mod 3).  Thus, (EQ 1) is solvable for all n ≡/ 1, 4, 7, 10, or 13 (mod 15). 
Again, taking (EQ 3), if we let a = 1, b = 2, d = 2, then

n + 2 = 15c ⇒ n ≡ 13 (mod 15)
If a = 2, b = 1, d = 2, then

2n + 1 = 15c ⇒ 2n ≡ 14 (mod 15) ⇒ n ≡ 7 (mod 15)
Thus, (EQ 1) is solvable for n ≡  7 or 13 (mod 15).
So (EQ 1) is solvable for all n ≡/ 1, 4, or 10 (mod 15). 
Thus, (EQ 1) is solvable for all n ≡/ 0, 1 or 4 (mod 5). 
Nothing that 4/5 = 1/2 + 1/5 + 1/10, lemma 1 tells us that (EQ 1) is solvable for n ≡ 0
(mod 5).
Thus, (EQ 1) is solvable for all n ≡/ 1 or 4 (mod 5).  ◊ 
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Now for the proof of the theorem.
Lemmas 3 and 4 combine to tell us that (EQ 1) is solvable for all n ≡/ 1 (mod 24). 
So (EQ 1) is solvable for all n ≡/ 1, 25, 49, 73, or 97 (mod 120). 
But then Lemma 6 tells us (EQ 1) is solvable for all n ≡/ 1 or 49 (mod 120). 
Combining this will Lemma 5, we see that (EQ 1) is solvable for all n
≡/ 1, 121, 361, 169, 289, or 569 (mod 840). 
Thus, (EQ 1) is solvable for all n ≡/ 12, 112, 132, 172, 192, or 232 (mod 840).  ∆ 

The 5/n Problem

Sierpinski has conjectured that 5/n can also always be expressed as the sum of 3
or fewer unit fractions.  Stewart [Ste64] has confirmed this for all n ≤ 1057438801 and for
all n not of the form 278460k + 1.  Stewart takes a slightly different approach to proving
this, showing how to pick a first fraction which leaves a result which can be expressed
with 2 terms.

The 6/n Problem

Webb [Web74] proves that 6/n is solvable for all n not of the form n ≡ 1, 61, or
541 (mod 660).

Webb also states that 10/n is solvable except for n ≡ 1 (mod 10), 3 (mod 140), 43
(mod 140), or 7 (mod 60).

The k/n Problem

Kiss makes the larger conjecture that for 4 ≤ a ≤ 7, a/b has an expansion of
length 3 or less, and for 8 ≤ a ≤ 12, a/b has an expansion of length of 4 or less.  [Kis60]

Sierpinski makes an even more general conjecture, that for a given k, there exists
N such that all k/n with n > N are expressible as the sum of 3 or fewer unit fractions.
[Gar92]  It then seems logical to extend this to the following conjecture:

Conjecture
Given t ≥ 3 and k > t, there exists N such that:

For all n > N, k/n is expressible as the sum of t or fewer unit fractions.

A computer was used to obtain a list of some rationals not expressible as the sum
of t or fewer unit fractions, where we set t = 3, 4, 5, or 6 for various values of k.  The
results are listed in Appendix C.

It seems apparent from the computer results that the following are the smallest
(in the sense of smallest denominator) rationals not expressible in a fixed number of
terms:
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t Smallest Rational Not Expressible in t Terms
2 2/3
3 8/11
4 16/17
5 77/79
6 728/739

Thus, an interesting question might be, what is the asymptotic growth of E(t), where
E(t) is the smallest denominator q such that there exists p such that p/q < 1 is not
expressible in t terms.  Thus, from above, we have E(6) = 739.
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7 Conclusions

We have explored many of the intricacies of algorithms for Egyptian fraction
expansions.  We have also looked at some Diophantine equation problems resulting
from Egyptian fractions.

This just scratches the surface of the wealth of number-theoretic problems
arising from Egyptian fractions.  We list some of them in Appendix A.

Some of the findings of this paper include:  values for M(P), E(t), and a
comparison of some of the various algorithms available.  And we have also raised a few
suggestions and questions which prompt further research, including the performance
of the Fibonacci-Sylvester algorithm, and the “optimal” practical number algorithm.
We would also like to point out that, apparently, no research has been done on finding
a lower bound for the number of terms.

The fundamental trouble in solving problems concerning Egyptian fractions, and
many number theory problems, is the apparent random distribution of prime
numbers.  This reduces most attempts to searches for only asymptotic results, while
dooming most efforts at the k/n problem to failure.

Still, there are many problems where further progress can be made, and the
asymptotic bounds for L(N) and D(N) continue to move.

Little could the Egyptians know that their simple table of fractions could
thousands of years later be the subject of so much research.  It is bound to be the
subject of research for many years to come.
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A Misc. Egyptian Fraction Problems

There are many other problems concerning Egyptian fractions, some of which we will
list here.

Improper Rationals

Stewart [Ste64] proves that any improper rational can be written as the sum of
unit fractions.  We can simply write the harmonic series 1/2 + 1/3 + 1/4 + ... until we
have a proper fraction remaining.

Znam’s Problem

Znam’s problem is:  Does there exist an integer xi for every integer s > 1 such that xi is a
proper factor of x1 · · · xi-1xi+1 · · · xs + 1 for i = 1,...,s?
The equation

 ∑
j=1

s
1
xj  + 

1
x1 · · · xs

  = 1 where 1 < x1 < x2 < ... < xs

is related to Znam’s problem.  [Zhe87]

Representing 1 with Egyptian Fractions

Define Un = smallest number of different unit fractions totalling 1 where the largest unit
fraction is ≤ 1/n.  For example, U3 = 5 because

1 = 
1
3  + 

1
4  + 

1
5  + 

1
6  + 

1
20 

is the shortest expansion of 1 without using 1/2.
Erdös and Straus [Erd78] prove that there are constants c1 and c2 such that

(e-1)n - c2 < Un < (e-1)n + c1n/log n

Representing 1 with Relatively Prime Denominators

A somewhat interesting question is whether 1 can be represented as 1/x1 + 1/x2 + ... +
1/xk, with xi |/  xj for all i ≠ j.  This was solved by Burshtein [Bur73], providing one
possible solution.  The reciprocals of the following integers sum to 1, and they are all
relatively prime:

6 10 14 15 21 22 33 35
55 77
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26 39 65 91
34 51 119 187
38 57 95 133
58 145 319
62 93 155
82 123 287

106 159 265 583
118 295 413
122 355 497
309 515 1133
226 791 1243
835 1169 1837

1329 2215 3101 4873
1438 3595 5033 7909
5854 8781 14635 20489 32197

141 188 235
332 415 581
267 356 979

1167 1556 1945 2723

The numbers are listed in this form to facilitate showing that the conditions hold.

Odd Egyptian Fractions

Breusch proves in [Bre54] that every positive rational with odd denominator can
be written as the sum of a finite number of unit fractions with odd denominators.  The
proof involves proving that a recursive procedure always terminates.

Representing 1 with Odd Denominators

1 = 
1
3  + 

1
5  + 

1
7  + 

1
9  + 

1
15  + 

1
21  + 

1
27  + 

1
35  + 

1
63  + 

1
105  + 

1
135 

[Bur73]

The Odd Greedy Algorithm

It is unknown whether the odd greedy “algorithm” always terminates. [Guy80]  It is
just like the normal greedy algorithm, except we always take the largest unit fraction
with an odd denominator less than the remainder.
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For example, with the normal greedy algorithm we get the expansion
2
7  = 

1
4  + 

1
28 

On the other hand, with the odd greedy algorithm, we get the expansion
2
7  = 

1
5  + 

1
13  + 

1
115  + 

1
10465 

Schinzel’s Conjecture

Straus and Subbarao [Str78] prove
a/n = 1/x ± 1/y ± 1/z (A. Schinzel’s conjecture (1956))

has integral solutions for sufficiently large n for all a < 40.
They prove this first by showing that a/n = 1/x ± 1/y is solvable for a = 1, 2, 3, 4,

or 6.  They then look at the equation a/n = 1/m ± r/mn and look at various cases
involving a, r, and φ(r).
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B     The Rhind Mathematical Papyrus

Here are the expansions given in the Rhind Mathematical Papyrus taken from
[Gil72].

Fraction 2/       Divisors of Expansion             Fraction 2/       Divisors of Expansion
53 30 318 795

5 3 15 55 30 330
7 4 28 57 38 114
9 6 18 59 36 236 531

11 6 66 61 40 244 488 610
13 8 52 104 63 42 126
15 10 30 65 39 195
17 12 51 68 67 40 335 536
19 12 76 114 69 46 138
21 14 42 71 40 568 710
23 12 276 73 60 219 292 365
25 15 75 75 50 150
27 18 54 77 44 308
29 24 58 174 232 79 60 237 316 790
31 20 124 155 81 54 162
33 22 66 83 60 332 415 498
35 30 42 85 51 255
37 24 111 296 87 58 174
39 26 78 89 60 356 534 890
41 24 246 328 91 70 130
43 42 86 129 301 93 62 186
45 30 90 95 60 380 570
47 30 141 470 97 56 679 776
49 28 196 99 66 198
51 34 102 101 101 202 303 606

Thus, for example, 
2
39  = 

1
26  + 

1
78 
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C Computer Results

Practical Numbers

The following is a table of the minimum number of terms required to write a number
as the sum of divisors of various practical numbers.  These were calculated by computer
except where noted.

It is interesting to note that the number of terms required for s1···sn seem to
be better than the number for ∏k.  For example, 9699690 requires 9 terms, but
16216200, a larger number, requires just 8 terms.

Practical Number Terms Worst Number
∏2 = 6 2 5
∏3 = 30 4 29
∏4 = 210 5 209
∏5 = 2310 7 2252
∏6 = 30030 8 29990
∏7 = 510510 8 510509
∏8 = 9699690 9 9699631
∏9 = 223092870 ≥ 10

s1s2 = 6 2 5
s1s2s3 = 24 3 23
s1s2s3s4 = 120 4 119
s1···s5 = 840 5 839
s1···s6 = 7560 6 7559
s1···s7 = 83160 7 83016
s1···s8 = 1081080 7 1081053
s1···s9 = 16216200 8 16215773
s1···s10 = 259459200 ≥ 8

210 = 1024 10‡ 1023
223 = 8388608 23‡ 8388607

Algorithm Comparison

The following is a comparison of 4 different algorithms:  Fibonacci-Sylvester,
Bleicher/Erdös, Tenenbaum/Yokota, and Golomb.

In all the following comparisons, only prime n in the ranges given are
used.  All fractions a/n where a < n are expanded using the four algorithms.

The numbers under the Average column represent averages over all
expansions in that range, and the numbers under the Worst column represent
the worst taken from all expansions in that range.

                                    
‡  done by hand
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Length Comparison

The numbers in the table are the number of terms in the expansions.

   Average      Worst   
n              Fib           Ble           Ten           Gol      Fib           Ble           Ten           Gol
2...1023.7 6.0 5.6 8.2 8 10 9 100
...202 4.3 6.2 6.3 11.6 11 10 10 198
...302 4.5 8.1 7.0 13.5 9 12 11 292
...402 4.6 8.1 7.1 14.9 10 12 11 400
...502 4.8 8.2 7.2 16.0 12 13 12 498
...602 4.9 8.2 7.3 16.9 10 13 12 600
...702 4.9 8.1 7.4 17.6 11 13 12 700
...802 5.0 8.0 7.5 18.3 11 13 12 796
...902 5.1 7.9 7.5 18.9 11 13 12 886
...10025.1 7.9 7.6 19.5 11 13 12 996
...11025.1 7.8 7.7 20.0 13 12 12 1096
...12025.2 7.8 7.7 20.4 11 12 12 1200
...13025.2 7.9 7.7 20.9 12 12 13 1300
...14025.3 7.9 7.8 21.2 12 13 12 1398
...15025.3 7.9 7.8 21.6 11 12 13 1498
...16025.3 7.9 7.8 22.0 12 13 13 1600
...17025.3 7.9 7.9 22.3 11 13 13 1698
...18025.4 8.0 7.9 22.6 12 12 13 1800
...19025.4 8.0 8.0 22.9 12 13 13 1900
...20025.4 8.0 8.1 23.2 12 13 13 1998

Denominator Comparison

The numbers in the table are the largest denominators in the expansions.

   Average      Worst   
n              Fib           Ble           Ten           Gol      Fib           Ble           Ten           Gol
2...1025.8 4.0 4.1 3.6 150 5 5 5
...202 9.0 4.5 4.7 4.5 1348 5 6 5
...302 10.3 5.6 6.2 4.8 396 6 8 5
...402 11.6 5.7 6.4 5.1 537 6 8 6
...502 12.9 6.0 6.5 5.5 2847 7 8 6
...602 13.6 6.1 6.6 5.6 259 7 8 6
...702 14.6 6.1 6.6 5.7 759 7 8 6
...802 15.0 6.1 6.7 5.8 304 7 8 6
...902 15.9 6.2 6.8 5.8 289 7 8 6
...100216.5 6.3 6.9 5.9 862 7 8 6
...110217.2 6.4 6.9 6.0 3455 7 8 7
...120217.6 6.4 7.0 6.2 592 7 8 7
...130218.2 6.4 7.0 6.3 877 7 9 7
...140218.5 6.5 7.0 6.4 997 7 9 7
...150219.0 6.5 7.1 6.5 959 7 9 7
...160219.7 6.5 7.1 6.5 916 7 9 7
...170219.9 6.5 7.1 6.6 1160 7 9 7
...180220.4 6.5 7.1 6.6 647 7 9 7
...190220.5 6.5 7.1 6.7 775 7 9 7
...200221.0 6.5 7.1 6.7 1236 7 9 7

Character Comparison
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The numbers in the table represent how many characters would be used
to print out the expansions – the number of digits + the number of terms - 1.

   Average      Worst   
n                     Fib           Ble           Ten           Gol                   Fib           Ble           Ten           Gol
2...10214.0 20.4 18.5 29.6 309 36 34 458
...202 20.9 22.5 23.0 47.9 2709 38 39 1046
...302 23.7 34.1 29.1 59.4 802 53 50 1610
...402 26.5 34.4 30.1 68.5 1086 53 52 2343
...502 29.2 35.0 30.9 76.2 5708 56 58 3029
...602 30.6 36.6 31.6 82.8 527 59 58 3743
...702 32.7 35.9 32.1 87.8 1530 59 58 4443
...802 33.6 35.4 32.8 92.6 621 61 57 5115
...902 35.4 35.0 33.1 96.6 585 62 58 5745
...100236.6 35.0 33.7 100.6 1736 62 59 6515
...110238.1 35.6 35.1 104.3 6924 61 59 7312
...120238.9 35.5 35.5 108.1 1196 60 60 8144
...130240.2 35.7 35.7 111.8 1767 60 63 8944
...140240.8 36.1 36.0 114.6 2006 63 63 9728
...150241.9 36.2 36.3 118.0 1927 61 66 10528
...160243.3 36.4 36.6 120.8 1843 61 65 11344
...170243.7 36.6 36.9 123.1 2330 64 66 12128
...180244.7 36.7 37.2 125.8 1310 61 67 12944
...190244.9 36.8 37.6 128.3 1561 61 64 13744
...200246.1 36.9 37.9 130.4 2485 63 66 14528

Best Percentages

The following percentages refer to the percentage of the time that an algorithm
is the best (or tied for the best) in any certain category.  For example, in the range of n
from 402 to 502, the Fibonacci-Sylvester algorithm has the fewest terms 96% of the
time.

n:  402 to 502
   Fib           Ble           Ten           Gol   

Length  96%   2%   9%  15%
Denominator  12%  19%  12%  70%
Characters  57%  10%  21%  19%

n:  1002 to 1102
   Fib           Ble           Ten           Gol   

Length  95%   8%   9%  11%
Denominator   8%  34%  17%  57%
Characters  51%  24%  23%  16%

n:  1902 to 2002
   Fib           Ble           Ten           Gol   

Length  95%   9%   9%   9%
Denominator   6%  48%  21%  44%
Characters  46%  34%  24%  14%

Practical Numbers Revisited
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The following is a table of M(P) (see the “Optimal” Practical Number Algorithm, section
3).  The table lists only the entries where M(P) is different, listing the smallest P for
which M(P) is a certain value.  For example, M(7) = 4, but M(5) = 4, so we only list M(5).

   P                               M(P)   
2 1
3 2
5 4
11 6
17 12
31 16
37 18
41 20
47 24
67 30
79 36
97 42

101 48
127 60
173 72
197 84
227 90
239 96
257 108
283 120
367 144
409 168
487 180
557 210
587 216
607 240
751 288
821 300
877 336
997 360

1181 420
1361 480
1523 504
1567 540
1693 600
1867 630
1877 660
2027 720
2423 840
2887 960
3061 1008
3229 1080
3607 1200
3847 1260
4373 1440
4919 1560
5051 1620
5087 1680
5981 1800
6047 1920
6131 1980
6563 2100
6947 2160
7451 2340
7649 2400
7817 2520
9371 2880
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9923 3120
10427 3240
10903 3360
12101 3600
12497 3780
13451 3960
14051 4200
14887 4320
15131 4620
16139 4680
16411 5040
19373 5760
19913 5880
20011 5880
20533 6120
21067 6240
21179 6300
22571 6720
24391 7200
25391 7560
28807 7920
29021 8400
30757 8820
31139 9240
34583 10080
39317 10920
40009 10920
40343 11340
40693 11760
42433 11880
43207 12240
43541 12600
48371 13440
48973 13860
52433 15120
59539 16380
61169 16800
62501 17640
65003 17640
66697 18480
71429 19800
72547 20160
72689 21000
74887 21420
75083 21600
75989 22176
76091 22320
77383 22440
77641 24000
77743 24300
78539 25344
79031 26136
79811 27132

Fixed Number of Terms

The following are values of k/n which aren’t expressible as the sum of a certain number
of unit fractions.  Testing was done only for the following values of n:
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k largest value of n tested
8-9 2222

10-11 5000
12-24 1000
25-49 2000
77 1000
78-99 300

100-129 400

So, for xample, all 9/n for n ≤ 2222 are expressible as the sum of 3 unit fractions except
9/11 and 9/19.

Not Expressible with 3 Terms

k n
8 11 17 131 241
9 11 19
10 11 43 61 67 181
11 37
12 13 25 29 31 37 73 97 193 433 577
13 14 53 61 67 79 211 281
14 17 19 29 59 257 353 841
15 16 17 19 23 31 34 47 53 61

79 113 122 137 151 197 226 233 271
541

Not Expressible with 4 Terms

k n
16 17
17-20
21 23
22 23
23-26
27 29
28 29 59
29 59
30 31 41
31-32
33 34 67
34 41 43
35 47
36 37
37 38
38 39 41 47 61
39 43 47
40 41 43
41 43 83
42
43 47 97
44 47 53 137



EGYPTIAN FRACTIONS COMPUTER RESULTS

47

45 47 61
46 47 49
47 53 57 59 71
48 97
49 50 59 71

Not Expressible with 5 Terms

k n
77 79
78-100
101 107
102 103
104 107
106 107
108 109
112 113
115 118
117 118
119 127
123 127
129 131     137

Not Expressible with 6 Terms

728
739 
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E Computer Program Listings

All programs were written in ANSI C.

Algorithm Package

The following is the algorithm package used to compare different algorithms in terms
of length, denominators, and a combination of both.

FRACTIONS.H

#ifndef FRACTIONS_INCLUDED
#define FRACTIONS_INCLUDED

#include "vlint.h"

struct ExpansionStruct
{
    int numTerms;
    VLInt denoms[20];
    VLInt *maxDenom;
    int measure;
};

typedef struct ExpansionStruct Expansion;

#endif FRACTIONS_INCLUDED

FIB.C

/* fib.c
 *
 *  Fibonacci-Sylvester Algorithm
 *
 * Kevin Gong
 * Spring 1992
 *
 */

#include <assert.h>
#include <stdio.h>
#include "headers/fib.h"
#include "headers/fractions.h"
#include "headers/vlint.h"

void FibonacciConstruction(unsigned long goalNum, unsigned long goalDen,
                           Expansion *fibExp)
{
    static VLInt num, den;
    static VLInt s, r;
    static VLInt temp;
    static boolean init = FALSE;

    if ( ! init )
    {
        num.digits = NULL;      den.digits = NULL;
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        temp.digits = NULL;     s.digits = NULL;    r.digits = NULL;
        init = TRUE;
    }

    VLIntCreate(&num, goalNum);
    VLIntCreate(&den, goalDen);

    InitExpansion(fibExp);

    while ( num.numDigits != 0 )
    {
        VLIntDivide(&den, &num, &s);
        VLIntMod(&den, &num, &r);

        if ( r.numDigits == 0 )
        {
            AddExpansionTerm(fibExp, &s);
            return;
        }

        VLIntSubtract(&num, &r, &temp);
        VLIntCopy(&temp, &num);
        VLIntAddDigit(&s, (char) 1, &temp);
        VLIntCopy(&temp, &s);

        VLIntMultiply(&den, &s, &temp);
        VLIntCopy(&temp, &den);
        AddExpansionTerm(fibExp, &s);
    }
}

GOLOMB.c

/* golomb.c
 *
 *  Golomb Algorithm
 *
 * Kevin Gong
 * Spring 1992
 *
 */

#include <stdio.h>
#include "headers/golomb.h"
#include "headers/general.h"
#include "headers/fractions.h"

static unsigned int MultiplicativeInverse(unsigned int p, unsigned int q,
                                          unsigned int *r);

void GolombConstruction(unsigned int goalNum, unsigned int goalDen,
                        Expansion *golExp)
{
    unsigned int inverse, r;
    static VLInt num, den;
    static VLInt temp;
    static boolean init = FALSE;

    InitExpansion(golExp);

    if ( ! init )
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    {
        num.digits = NULL;      den.digits = NULL;      temp.digits = NULL;
        init = TRUE;
    }

    VLIntCreate(&num, goalNum);
    VLIntCreate(&den, goalDen);

    while ( TRUE )  /* infinite loop */
    {
        MakeLowestTerms(&goalNum, &goalDen);
        if ( goalNum == 1 )
        {
            VLIntCreate(&temp, (unsigned long) goalDen);
            AddExpansionTerm(golExp, &temp);
            return;
        }

        inverse = MultiplicativeInverse(goalNum, goalDen, &r);

        VLIntCreate(&temp, (unsigned long) inverse*goalDen);
        AddExpansionTerm(golExp, &temp);

        goalDen = inverse;
        goalNum = r;
    }
}

static unsigned int MultiplicativeInverse(unsigned int p, unsigned int q,
                                          unsigned int *r)
{
    register int index;

    for ( index = 0; index < q; index++ )
    {
        if ( (index*p) % q == 1 )
        {
            *r = ((index*p)-1)/q;
            return index;
        }
    }

    fprintf(stderr, "croak in Multiplicative inverse\n");
    fprintf(stderr, "p = %u, q = %u\n", p, q );
    exit(-1);
}

BLEICHER.C

/* bleicher.c
 *
 *  Bleicher/Erdös Algorithm
 *
 * Kevin Gong
 * Spring 1992
 *
 */

#include <stdio.h>
#include "headers/bleicher.h"
#include "headers/general.h"
#include "headers/fractions.h"
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boolean IsPrime(int number);
int Primes(int nth);
int FindPI(int k);
void Sort(int data[], int number);
void FindDivisorSum(int b, int d[], int *numD, int k);

int divisors[10][1024];
int numDivisors[10];
int primes[25];
int PI[10];
int numPI = 0;
int numPrimes = 0;

void BleicherConstruction(unsigned int a, unsigned int N,
                          Expansion *bleExp)
{
    int k;
    int b;
    int d[1024];
    int numD;
    register int index;
    int q, r;
    static VLInt temp;
    static boolean init = FALSE;

    if ( ! init )
    {
        temp.digits = NULL;
        init = TRUE;
    }

    InitExpansion(bleExp);

    if ( a == 1 )
    {
        VLIntCreate(&temp, (unsigned long) N);
        AddExpansionTerm(bleExp, &temp);
        return;
    }

    k = 0;
    while ( PI[k] < N )
        k++;

    if ( PI[k] % N == 0 )
    {
        b = a*PI[k]/N;

        FindDivisorSum(b, d, &numD, k);

        for ( index = 0; index < numD-1; index++ )
        {
            VLIntCreate(&temp, PI[k]/d[index]);
            AddExpansionTerm(bleExp, &temp);
        }

        VLIntCreate(&temp, PI[k]/d[numD-1]);
        AddExpansionTerm(bleExp, &temp);
    }
    else
    {



EGYPTIAN FRACTIONS COMPUTER PROGRAM LISTINGS

55

        q = a*PI[k]/N;
        while ( (r = a*PI[k]-q*N) < PI[k]-PI[k]/k )
            q--;

/* handle q/PI[k] */
        FindDivisorSum(q, d, &numD, k);

        for ( index = 0; index < numD; index++ )
        {
            VLIntCreate(&temp, PI[k]/d[index]);
            AddExpansionTerm(bleExp, &temp);
        }

/* now handle r/N*PI[k] */
        FindDivisorSum(r, d, &numD, k);

        for ( index = 0; index < numD-1; index++ )
        {
            VLIntCreate(&temp, N*PI[k]/d[index]);
            AddExpansionTerm(bleExp, &temp);
        }

        VLIntCreate(&temp, N*PI[k]/d[numD-1]);
        AddExpansionTerm(bleExp, &temp);
    }

    return;
}

void FindDivisorSum(int b, int d[], int *numD, int k)
{
    register int index = numDivisors[k]-1;
    register int number = 0;

    while ( b != 0 )
    {
        while ( divisors[k][index] > b )
            index--;

        d[number] = divisors[k][index];
        b -= d[number];
        number++;
    }

    *numD = number;
}

(some functions not listed)

TENENBAUM.c

/* tenenbaum.c
 *
 *  Tenenbaum/Yokota Algorithm
 *
 * Kevin Gong
 * Spring 1992
 *
 */

#include <stdio.h>
#include "headers/tenenbaum.h"
#include "headers/general.h"
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#include "headers/fractions.h"

extern  int divisors[10][1024];
static int sigDivisors[30][1024];
extern int numDivisors[10];
static int numSigDivisors[30];
extern int primes[25];
static int sigma[99];
extern int PI[10];
extern int numPI;
extern int numPrimes;
static int numSigma = 0;

void TenenbaumConstruction(unsigned int a, unsigned int N,
                          Expansion *tenExp)
{
    int k;
    int b;
    int d[1024];
    int numD;
    register int index;
    int s, r;
    int n;
    int sigProd;
    int rStar;
    static VLInt temp;
    static boolean init = FALSE;

    InitExpansion(tenExp);

    if ( ! init )
    {
        temp.digits = NULL;
        init = TRUE;
    }

    if ( a == 1 )
    {
        VLIntCreate(&temp, N);
        AddExpansionTerm(tenExp, &temp);
        return;
    }

    k = 0;
    while ( PI[k] < N )
        k++;

    if ( PI[k] % N == 0 )
    {
        b = a*PI[k]/N;

        FindDivisorSum(b, d, &numD, k);

        for ( index = 0; index < numD-1; index++ )
        {
            VLIntCreate(&temp, PI[k]/d[index]);
            AddExpansionTerm(tenExp, &temp);
        }

        VLIntCreate(&temp, PI[k]/d[numD-1]);
        AddExpansionTerm(tenExp, &temp);
    }
    else
    {
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        s = a*PI[k]/N;
        while ( (r = a*PI[k]-s*N) < PI[k] )
            s--;

/* handle s/PI[k] */
        FindDivisorSum(s, d, &numD, k);

        for ( index = 0; index < numD; index++ )
        {
            VLIntCreate(&temp, PI[k]/d[index]);
            AddExpansionTerm(tenExp, &temp);
        }

/* now handle r/N*PI[k] */
        sigProd = 1;
        for ( n = 0; n < numSigma; n++ )
        {
            sigProd *= sigma[n];
            if ( primes[k] == sigma[n] )
                break;
        }

        rStar = r*(sigProd/PI[k]);

        FindSigmaSum(rStar, d, &numD, n);

        for ( index = 0; index < numD-1; index++ )
        {
            VLIntCreate(&temp, N*sigProd/d[index]);
            AddExpansionTerm(tenExp, &temp);
        }

        VLIntCreate(&temp, N*sigProd/d[numD-1]);
        AddExpansionTerm(tenExp, &temp);
    }

    return;
}

void FindSigmaSum(int b, int d[], int *numD, int n)
{
    register int index = numSigDivisors[n]-1;
    register int number = 0;

    while ( b != 0 )
    {
        while ( sigDivisors[n][index] > b )
            index--;

        d[number] = sigDivisors[n][index];
        b -= d[number];
        number++;
    }

    *numD = number;
}

(some functions not listed)

Practical Number Package
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The following is the practical number package used to test numbers for practicality, and
also to test certain attributes of practical numbers.  Terms.c finds k such that
k*denominator is a practical number (it tests only denominators which are prime).
Length.c find the number of terms required to express all the numbers less than a given
practical number.

TERMS.C

/* terms.c
 *
 *    Find k such that k*denominator is a practical number
 *
 * Kevin Gong
 * Spring 1992
 *
 */

#include <stdio.h>
#include <math.h>
#include "headers/general.h"
#include "headers/vlint.h"
#include "headers/fractions.h"
#include "headers/readPrimes.h"
#include "headers/divisors.h"

#define TRUE 1

void main(unsigned long argc, char **argv)
{
    unsigned long goalDen;
    unsigned long test;
    unsigned long start, finish;
    register int index;
    unsigned long co;
    unsigned long oldCo = 0;

    ReadPrimes();

    if ( argc != 3 )
    {

fprintf(stderr, "Error -- usage:  terms <start> <finish>\n");
exit(-1);

    }

    start = atoi(argv[1]);
    finish = atoi(argv[2]);
    index = 0;
    while ( primes[index] < start )

index++;

    co = 1;
    while ( primes[index] <= finish )
    {

goalDen = primes[index];
test = co*goalDen;

while ( ! PracticalNumber(test) )
{
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    test += goalDen;
    co++;
}

if ( co != oldCo )
{
    fprintf(stdout, "%lu\t%lu\n", goalDen, test/goalDen);
    oldCo = co;

        }
index++;

    }
}

LENGTH.C

/* length.c
 *
 *  Finds the number of divisors of a practical number needed to express
 *  all integers less than that practical number
 *
 */

#include <assert.h>
#include <stdio.h>
#include <math.h>
#include "headers/general.h"
#include "headers/vlint.h"
#include "headers/readPrimes.h"
#include "headers/divisors.h"

#define TRUE    1

int Expand(unsigned long number, unsigned long divisors[], int numDivisors);

void main(unsigned long argc, char **argv)
{
    unsigned long test;
    int numDivisors;
    unsigned long divisors[999];
    register long toTest;
    int numTerms;
    int worst;

    if ( argc != 2 )
    {
        fprintf(stderr, "Error -- usage:  terms <practical>\n");
        exit(-1);
    }

    ReadPrimes();

    test = (unsigned long) atoi(argv[1]);
    numDivisors = FastFindDivisors(test, divisors);
    worst = 0;
    for ( toTest = test-1; toTest > 0; toTest-- )
    {
        numTerms = Expand(toTest, divisors, numDivisors);
        if ( numTerms > worst )
        {
            worst = numTerms;
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            fprintf(stdout, "Number %lu\tWorst Num Terms = %d (from %lu)\n",
                    test, worst, toTest );
        }
    }
}

/*
 * expands 'number' as the sum of items from 'divisors' and returns the
 * number of items used
 *
 */
int Expand(unsigned long number, unsigned long divisors[], int numDivisors)
{
    register int index;
    int numTerms = 0;

    index = numDivisors-1;

    while ( number != 0 )
    {
        assert(index>=0);
        while ( divisors[index] > number )
        {
            index--;
            assert(index>=0);
        }
        number -= divisors[index];
        index--;

        numTerms++;
    }

    return numTerms;
}

PRACTICAL.C

/* practical.c
 *
 *  Practical Numbers
 *
 * PracticalNumber returns TRUE if and only if 'number' is a practical number
 *
 * Kevin Gong
 * Spring 1992
 *
 */

#include "headers/practical.h"

boolean PracticalNumber(unsigned long number)
{
    unsigned long divisors[999];
    int numDivisors;
    register int index;
    register unsigned long sum = 0;

    numDivisors = FastFindDivisors(number, divisors);
    for ( index = 0; index < numDivisors-1; index++ )
    {
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        sum += divisors[index];
        if ( sum < divisors[index+1]-1 )
            return FALSE;
    }
    return TRUE;
}

DIVISORS.C

/* divisors.c
 *
 * FastFindDivisors finds all the divisors of a number
 *      first finds prime factors, then computes divisors
 *      returns the number of divisors
 *
 * Kevin Gong
 * Spring 1992
 *
 */

#include <math.h>
#include "headers/divisors.h"
#include "headers/readPrimes.h"

typedef struct FactorStruct
{
    unsigned long   number;
    int             exponent;
} Factor;

int FastFindDivisors(unsigned long number, unsigned long divisors[])
{
    register unsigned long end;
    register int index;
    Factor  factors[500];
    int numFactors = 0;
    unsigned long lastFactor = 0;
    int numDivisors = 0;
    register int loop;
    int temp;
    unsigned long thisDivisor;
    register int inner;
    int i, j;

    end = (unsigned long) sqrt((double)number) + 1;
    index = 0;
    while ( primes[index] <= end )
    {
        if ( number % primes[index] == 0 )
        {
            number /= primes[index];
            if ( primes[index] == lastFactor )
                factors[numFactors-1].exponent++;
            else
            {
                factors[numFactors].number = primes[index];
                factors[numFactors].exponent = 1;
                lastFactor = primes[index];
                numFactors++;
            }
        }
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        else
            index++;
    }

    if ( number != 1 )
    {
        factors[numFactors].number = number;
        factors[numFactors].exponent = 1;
        numFactors++;
    }

    divisors[numDivisors] = 1;
    numDivisors++;
    for ( index = 0; index < numFactors; index++ )
    {
        temp = numDivisors;
        thisDivisor = 1;
        for ( loop = 0; loop < factors[index].exponent; loop++ )
        {
            thisDivisor *= factors[index].number;
            for ( inner = 0; inner < temp; inner++ )
            {
                divisors[numDivisors] = thisDivisor*divisors[inner];
                numDivisors++;
            }
        }
    }

    /* sort divisors */
    for ( i = 0; i < numDivisors-1; i++ )
        for ( j = i+1; j < numDivisors; j++ )
            if ( divisors[i] > divisors[j] )
            {
                temp = divisors[i];
                divisors[i] = divisors[j];
                divisors[j] = temp;
            }

    return numDivisors;
}

Fixed Number of Terms Package

The following was used to check whether a number could be expanded using k
terms, where k ranged from 2 to 6.  This was used to calculated E(t).

/* fixed.c
 *
 *  minimize number of terms in an Egyptian fraction expansion
 *
 * Kevin Gong
 * Spring 1992
 *
 */

#include <stdio.h>
#include <math.h>
#include "headers/general.h"
#include "headers/vlint.h"
#include "headers/fractions.h"
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#define TRUE 1
#define MAX_UNSIGNED_INT    (unsigned long) (~1)

void FindDivisors(unsigned long number, unsigned long divisors[],
  int *numDivisors);

boolean RelativelyPrime(unsigned long x, unsigned long y);
void ShortestConstruction(unsigned long goalNum, unsigned long goalDen,

  Expansion *shortExp);
boolean TwoExpandable(unsigned long goalNum, unsigned long goalDen,

      VLInt *x, VLInt *y);
boolean NExpandable(unsigned long goalNum, unsigned long goalDen, int n, VLInt x[]);

void MakeLowestTerms(unsigned long *numer, unsigned long *denom);
unsigned long ExpandFraction(unsigned long goalNum, unsigned long goalDen);
void PrintExpansion(Expansion *exp);
unsigned long GenerateDenoms(unsigned long k, unsigned long index);
void FindCounterExamples(void);

unsigned long notExpress[10][599];
int numNot[10];

void main(unsigned long argc, char **argv)
{
    unsigned long goalNum;
    unsigned long goalDen;
    register unsigned long index;
    unsigned long maxDenom;
    unsigned long minDenom;
    unsigned long temp1, temp2;
    unsigned long best;
    unsigned long mask;
    unsigned long total;
    int numTerms;
    int termCount[5];
    int count;

    for ( index = 0; index < 10; index++ )
    {

numNot[index] = 0;
    }

    if ( argc == 1 )
    {

FindCounterExamples();
    }
    else if ( argc == 3 )
    {

goalNum = atoi(argv[1]);
goalDen = atoi(argv[2]);
MakeLowestTerms(&goalNum, &goalDen);
ExpandFraction(goalNum, goalDen);

    }
    else
    {

if ( argc == 2 )
{
    fprintf(stderr, "Minimum denominator:  ");
    fscanf(stdin, "%u", &minDenom);
    fprintf(stderr, "Maximum denominator:  ");
    fscanf(stdin, "%u", &maxDenom);
}
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else if ( argc == 4 )
{
    minDenom = atoi(argv[2]);
    maxDenom = atoi(argv[3]);
}
goalNum = atoi(argv[1]);
total = 0;

termCount[2] = 0; termCount[3] = 0;
for ( goalDen = minDenom; goalDen <= maxDenom; goalDen++ )
{
    temp1 = goalNum;
    temp2 = GenerateDenoms(goalNum, goalDen);
    MakeLowestTerms(&temp1, &temp2);
    if ( temp1 == goalNum )
    {

numTerms = ExpandFraction(goalNum, temp2);
termCount[numTerms]++;

    }
}

for ( index = 5; index < 10; index++ )
{
    if ( numNot[index] == 0 )

continue;
    fprintf(stderr, "NOT EXPRESSIBLE in %d TERMS:  %ld/...\n", index,

    goalNum);
    for ( count = 0; count < numNot[index]; count++ )

fprintf(stderr, "%ld\t", notExpress[index][count]);
    fprintf(stderr, "\n");
}

    }
}

unsigned long ExpandFraction(unsigned long goalNum, unsigned long goalDen)
{
    unsigned long fib, gol, ble;
    unsigned long best;
    unsigned long mask = 0;
    Expansion fibExp, golExp, bleExp, shortExp;
    int numTerms;

    fprintf(stdout, "-> Expansion of %u/%u\n", goalNum, goalDen);

    ShortestConstruction(goalNum, goalDen, &shortExp);
    PrintExpansion(&shortExp);

    numTerms = shortExp.numTerms;
    return numTerms;
}

void MakeLowestTerms(unsigned long *numer, unsigned long *denom)
{
    register unsigned long index;

    index = 2;
    while ( index <= *numer )
    {

if ( (*numer % index == 0) && (*denom % index == 0) )
{
    *numer /= index;
    *denom /= index;
}
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else
    index++;

    }
}

void InitExpansion(Expansion *exp)
{
    exp->numTerms = 0;
    exp->maxDenom = 0;
}

void AddExpansionTerm(Expansion *exp, VLInt *term)
{
    register unsigned long i, j;
    register unsigned long temp;

    bcopy(term, &exp->denoms[exp->numTerms], sizeof(VLInt));
    exp->numTerms++;
}

void PrintExpansion(Expansion *exp)
{
    register unsigned long index;
    char temp[100];

    for ( index = 0; index < exp->numTerms-1; index++ )
fprintf(stdout, "1/%s + ", VLIntPrint(&exp->denoms[index], temp));

    fprintf(stdout, "1/%s (%d)\n",
    VLIntPrint(&exp->denoms[exp->numTerms-1], temp),
    exp->numTerms);

}

void ShortestConstruction(unsigned long goalNum, unsigned long goalDen,
  Expansion *shortExp)

{
    VLInt w, x, y, z;
    VLInt temp;
    VLInt terms[10];
    register int n, index;

    InitExpansion(shortExp);
    if ( goalNum == 1 )
    {

AddExpansionTerm(shortExp, VLIntCreate(&temp, goalDen));
return;

    }

    for ( n = 2; n < 10; n++ )
    {

fprintf(stdout, "Testing for size %d expansion\n", n);
if ( NExpandable(goalNum, goalDen, n, terms) )
{
    for ( index = 0; index < n; index++ )

AddExpansionTerm(shortExp, &terms[index]);
    return;
}
else
{
    notExpress[n][numNot[n]] = goalDen;
    numNot[n]++;
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}
    }

    exit(0);
}

boolean NExpandable(unsigned long goalNum, unsigned long goalDen, int n, VLInt x[])
{
    if ( n == 2 )

return TwoExpandable(goalNum, goalDen, &x[0], &x[1]);
    else
    {

unsigned long first;
unsigned long restNum, restDen;
unsigned long nthRec;

nthRec = n*goalDen/goalNum;
first = 1+(goalDen/goalNum);
while ( first < nthRec )
{
    restDen = goalDen*first;
    restNum = goalNum*first - goalDen;
    MakeLowestTerms(&restNum, &restDen);

    if ( NExpandable(restNum, restDen, n-1, x) )
    {

VLIntCreate(&x[n-1], first);
return TRUE;

    }

    first++;
}

return FALSE;
    }
}

void FindDivisors(unsigned long number, unsigned long divisors[],
  int *numDivisors)

{
    register unsigned long index;

    *numDivisors = 0;

    for ( index = 1; index <= (unsigned long)sqrt((double)number); index++ )
    {

if ( number % index == 0 )
{
    divisors[*numDivisors] = index;
    (*numDivisors)++;
    divisors[*numDivisors] = number/index;
    (*numDivisors)++;
}

    }
}

boolean TwoExpandable(unsigned long goalNum, unsigned long goalDen,
      VLInt *x, VLInt *y)

{
    register unsigned long P, Q;
    register unsigned long mult;
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    register unsigned long total;
    unsigned long divisors[999];
    int numDivisors;
    int ptr1, ptr2;
    VLInt temp1, temp2;

    FindDivisors(goalDen, divisors, &numDivisors);

    for ( ptr1 = 0; ptr1 < numDivisors-1; ptr1++ )
    {

for ( ptr2 = ptr1+1; ptr2 < numDivisors; ptr2++ )
{
    P = divisors[ptr1]; Q = divisors[ptr2];
    if ( RelativelyPrime(P, Q) &&

 (goalDen % P == 0) && (goalDen % Q == 0) &&
 ((P + Q) % goalNum == 0) )

    {
mult = (P+Q)/goalNum;
VLIntCreate(&temp1, mult);
VLIntCreate(&temp2, goalDen/P);
VLIntMultiply(&temp1, &temp2, x);
VLIntCreate(&temp2, goalDen/Q);
VLIntMultiply(&temp1, &temp2, y);
return TRUE;

    }
}

    }

    return FALSE;
}

boolean RelativelyPrime(unsigned long x, unsigned long y)
{
    register unsigned long index = 2;
    register unsigned long end;

    if ( (x == 1) || (y == 1) )
return TRUE;

    if ( x == y )
return FALSE;

    else if ( (x < y) && (y % x == 0) )
return FALSE;

    else if ( (y < x) && (x % y == 0) )
return FALSE;

    end = (x < y) ? (unsigned long)sqrt((double)x) :
    (unsigned long)sqrt((double)y);

    while ( index <= end )
    {

if ( (x % index == 0) && (y % index == 0) )
    return FALSE;

index++;
    }

    return TRUE;
}

unsigned long GenerateDenoms(unsigned long k, unsigned long index)
{



EGYPTIAN FRACTIONS COMPUTER PROGRAM LISTINGS

68

    unsigned long mult;
    unsigned long denom;

    if ( k == 4 )
    {

mult = index/6;
denom = 840*(mult+1);
switch(index%6)
{
    case 0: return denom+1*1;
    case 1: return denom+11*11;
    case 2: return denom+13*13;
    case 3: return denom+17*17;
    case 4: return denom+19*19;
    case 5: return denom+23*23;
}

    }
    else

return index;
}

void FindCounterExamples()
{
    register int numTerms;
    unsigned long goalNum, goalDen;
    VLInt x[10];
    unsigned long temp1, temp2;

    goalNum = 7;
    goalDen = 8;
    for ( numTerms = 3; numTerms < 10; numTerms++ )
    {

while ( NExpandable(goalNum, goalDen, numTerms, x) )
{
    goalDen++;
    temp2 = goalDen;    temp1 = goalNum;
    MakeLowestTerms(&temp1, &temp2);
    while ( temp1 != goalNum )
    {

goalDen++;  temp2 = goalDen; temp1 = goalNum;
MakeLowestTerms(&temp1, &temp2);

    }

    if ( goalDen > goalNum+40 )
    {

goalNum++;
fprintf(stdout, "Testing %ld/...\n", goalNum);
goalDen = goalNum+1;

    }
}
fprintf(stderr, "Not expressible in %d terms:  %ld/%ld\n",

numTerms, goalNum, goalDen);
    }
}

VLInt Package

The following is the VLInt (Very Large Integer) package used by the other programs to
manipulate positive integers with many digits.
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/* vlint.h
 *
 *  Very Large Integers
 *
 * Handles positive integers of any length
 *
 * This package provides routines to manipulate positive integers of any length
 * Functions include add, subtract, multiply, divide, modulo, and comparison
 *
 * Kevin Gong
 * Spring 1992
 *
 */

#ifndef VLINT_INCLUDED
#define VLINT_INCLUDED

#include "general.h"

#define Min(a,b)    ((a < b) ? a : b)

typedef struct VLIntStruct
{
    char *digits;       /* digits[0] = lsb */
    int numDigits;
    int maxDigits;
} VLInt;

VLInt *VLIntCreate(VLInt *vlint, unsigned long number);
char *VLIntPrint(VLInt *vlint, char *string);
boolean VLIntEquality(VLInt *src1, VLInt *src2);
boolean VLIntLessThan(VLInt *src1, VLInt *src2);
VLInt *VLIntAdd(VLInt *src1, VLInt *src2, VLInt *dest);
VLInt *VLIntSubtract(VLInt *src1, VLInt *src2, VLInt *dest);
VLInt *VLIntMultiply(VLInt *src1, VLInt *src2, VLInt *dest);
VLInt *VLIntDivide(VLInt *src1, VLInt *src2, VLInt *dest);
VLInt *VLIntMod(VLInt *src1, VLInt *src2, VLInt *dest);
VLInt *VLIntMultiplyDigit(VLInt *src1, char digit, VLInt *dest);
void VLIntCopy(VLInt *src, VLInt *dest);
VLInt *VLIntShiftLeft(VLInt *src, int exponent, VLInt *dest);
VLInt *VLIntAddDigit(VLInt *src, char digit, VLInt *dest);

#endif VLINT_INCLUDED

/* vlint.c
 *
 *  Very Large Integers
 *
 * Handles positive integers of any length
 *
 * Kevin Gong
 * Spring 1992
 *
 */

/*--------------*
 * HEADER FILES *
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 *--------------*/
#include <math.h>
#include <stdio.h>
#include <assert.h>
#include "headers/general.h"
#include "headers/vlint.h"

char VLIntDivideResultDigit(VLInt *src1, VLInt *src2, int place, VLInt table[],
                           char left, char right);

/*----------------*
 * Create a VLInt *
 *----------------*/
VLInt *VLIntCreate(VLInt *vlint, unsigned long number)
{
    register int pointer = 0;
    register char *digits;
    int size;

    if ( number < 10 )
        size = 1;
    else
        size = (int) log10((double)number) + 1;

    if ( (vlint->digits == NULL) || (size > vlint->maxDigits) )
    {
        if ( vlint->digits != NULL )
            free(vlint->digits);
        size *= 2;
        vlint->digits = (char *) malloc(size*sizeof(char));
        vlint->maxDigits = size;
    }

    digits = vlint->digits;

    while ( number != 0 )
    {
        digits[pointer] = number % 10;
        number /= 10;
        pointer++;
    }

    vlint->numDigits = pointer;

    assert(vlint->numDigits <= vlint->maxDigits);

    return vlint;
}

/*---------------*
 * Print a VLInt *
 *---------------*/
char *VLIntPrint(VLInt *vlint, char *string)
{
    register int pointer;
    register char *digits = vlint->digits;
    register int numDigits = vlint->numDigits;

    for ( pointer = 0; pointer < numDigits; pointer++ )
        string[pointer] = digits[numDigits-pointer-1] + '0';

    string[pointer] = '\0';
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    return string;
}

/*--------------*
 * src1 == src2 *
 *--------------*/
/*----------------------------------------*
 * Simple equality test.  Takes O(n) time *
 *----------------------------------------*/
boolean VLIntEquality(VLInt *src1, VLInt *src2)
{
    register int index;
    char *digits1 = src1->digits;
    char *digits2 = src2->digits;

    if ( src1->numDigits != src2->numDigits )
        return FALSE;

    for ( index = src1->numDigits-1; index >= 0; index-- )
        if ( digits1[index] != digits2[index] )
            return FALSE;

    return TRUE;
}

/*-------------*
 * src1 < src2 *
 *-------------*/
/*------------------------------------------*
 * Simple inequality test.  Takes O(n) time *
 *------------------------------------------*/
boolean VLIntLessThan(VLInt *src1, VLInt *src2)
{
    register int index;
    char *digits1 = src1->digits;
    char *digits2 = src2->digits;

    if ( src1->numDigits < src2->numDigits )
        return TRUE;
    else if ( src1->numDigits > src2->numDigits )
        return FALSE;

    for ( index = src1->numDigits-1; index >= 0; index-- )
        if ( digits1[index] < digits2[index] )
            return TRUE;
        else if ( digits1[index] > digits2[index] )
            return FALSE;

    return FALSE;
}

/*--------------------*
 * dest = src1 - src2 *
 *--------------------*/
/*-------------------------------*
 * Subtraction.  Takes O(n) time *
 *-------------------------------*/
VLInt *VLIntSubtract(VLInt *src1, VLInt *src2, VLInt *dest)
{
    char *digits1, *digits2, *destDigits, *restDigits;
    register int pointer;
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    register int firstEnd, secondEnd;
    register char borrow = 0;
    char temp;
    int size;

    digits1 = src1->digits;
    digits2 = src2->digits;

    if ( src1->numDigits < src2->numDigits )
    {
        fprintf(stdout, "Negative output in subtract\n");
        exit(-1);
    }
    else
    {
        firstEnd = src2->numDigits;
        secondEnd = src1->numDigits;
        restDigits = digits1;

        size = src1->numDigits;
        if ( (dest->digits == NULL) || (size > dest->maxDigits) )
        {
            if ( dest->digits != NULL )
                free(dest->digits);
            size *= 2;
            dest->digits = (char *) malloc(size*sizeof(char));
            dest->maxDigits = size;
        }
        destDigits = dest->digits;
    }

    for ( pointer = 0; pointer < firstEnd; pointer++ )
    {
        temp = digits1[pointer] - digits2[pointer] - borrow;
        if ( temp < 0 )
        {
            destDigits[pointer] = temp+10;
            borrow = 1;
        }
        else
        {
            destDigits[pointer] = temp;
            borrow = 0;
        }
    }

    for ( ; pointer < secondEnd; pointer++ )
    {
        temp = restDigits[pointer] - borrow;
        if ( temp < 0 )
        {
            destDigits[pointer] = temp+10;
            borrow = 1;
        }
        else
        {
            destDigits[pointer] = temp;
            borrow = 0;
        }
    }

    if ( borrow == 1 )
    {
        fprintf(stdout, "Negative output in subtract\n");



EGYPTIAN FRACTIONS COMPUTER PROGRAM LISTINGS

73

        exit(-1);
    }

    pointer = secondEnd-1;
    while ( (pointer >= 0) && (destDigits[pointer] == 0) )
        pointer--;

    dest->numDigits = pointer+1;

    return dest;
}

/*--------------------*
 * dest = src1 + src2 *
 *--------------------*/
/*----------------------------*
 * Addition.  Takes O(n) time *
 *----------------------------*/
VLInt *VLIntAdd(VLInt *src1, VLInt *src2, VLInt *dest)
{
    char *digits1, *digits2, *destDigits, *restDigits;
    register int pointer;
    register int firstEnd, secondEnd;
    register char carry = 0;
    int size;

    digits1 = src1->digits;
    digits2 = src2->digits;
    if ( src1->numDigits < src2->numDigits )
    {
        firstEnd = src1->numDigits;
        secondEnd = src2->numDigits;
        restDigits = digits2;
        size = src2->numDigits+1;
    }
    else
    {
        firstEnd = src2->numDigits;
        secondEnd = src1->numDigits;
        restDigits = digits1;
        size = src1->numDigits+1;
    }

    if ( (dest->digits == NULL) || (size > dest->maxDigits) )
    {
        if ( dest->digits != NULL )
            free(dest->digits);
        size *= 2;
        dest->digits = (char *) malloc(size*sizeof(char));
        dest->maxDigits = size;
    }
    destDigits = dest->digits;

    for ( pointer = 0; pointer < firstEnd; pointer++ )
    {
        destDigits[pointer] = digits1[pointer] + digits2[pointer] + carry;
        if ( destDigits[pointer] > 9 )
        {
            destDigits[pointer] -= 10;
            carry = 1;
        }
        else
            carry = 0;
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    }

    for ( ; pointer < secondEnd; pointer++ )
    {
        destDigits[pointer] = restDigits[pointer] + carry;
        if ( destDigits[pointer] > 9 )
        {
            destDigits[pointer] -= 10;
            carry = 1;
        }
        else
            carry = 0;
    }

    if ( carry == 1 )
    {
        destDigits[pointer] = carry;
        dest->numDigits = secondEnd+1;
    }
    else
        dest->numDigits = secondEnd;

    assert(dest->numDigits <= dest->maxDigits);

    return dest;
}

/*--------------------*
 * dest = src1 * src2 *
 *--------------------*/
/*------------------------------------------------------------------------*
 * Multiplication.  Create a table of 0*multiplicand, 1*multiplicand, ... *
 * 9*multiplicand.  Takes O(n*n) due to n additions.                      *
 *------------------------------------------------------------------------*/
VLInt *VLIntMultiply(VLInt *src1, VLInt *src2, VLInt *dest)
{
    VLInt *multiplier, *multiplicand;
    char *multiplierDigits;
    boolean computed[10];
    static VLInt temp, temp2;
    static VLInt table[10];
    static boolean init = FALSE;
    register int pointer;
    register int index;

    for ( index = 0; index < 10; index++ )
    {
        computed[index] = FALSE;
    }

    if ( ! init )
    {
        temp.digits = NULL;    temp2.digits = NULL;
        for ( index = 0; index < 10; index++ )
            table[index].digits = NULL;
        init = TRUE;
    }

    if ( src1->numDigits < src2->numDigits )
    {
        multiplier = src1;
        multiplicand = src2;
        multiplierDigits = src1->digits;
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    }
    else
    {
        multiplier = src2;
        multiplicand = src1;
        multiplierDigits = src2->digits;
    }

    VLIntCreate(dest, (unsigned long) 0);
    for ( pointer = 0; pointer < multiplier->numDigits; pointer++ )
    {
        if ( multiplierDigits[pointer] == 0 )
            continue;

        if ( ! computed[multiplierDigits[pointer]] )
        {
            if ( multiplierDigits[pointer] == 1 )
                VLIntCopy(multiplicand, &table[multiplierDigits[pointer]]);
            else
                    VLIntMultiplyDigit(multiplicand, multiplierDigits[pointer],
                                        &table[multiplierDigits[pointer]]);
        }

        VLIntShiftLeft(&table[multiplierDigits[pointer]], pointer, &temp);
        VLIntAdd(dest, &temp, &temp2);
        VLIntCopy(&temp2, dest);
    }

    assert(dest->numDigits <= dest->maxDigits);

    return dest;
}

/*-------------------*
 * dest = src1*digit *
 *-------------------*/
VLInt *VLIntMultiplyDigit(VLInt *src1, char digit, VLInt *dest)
{
    char *destDigits;
    char *digits1 = src1->digits;
    int pointer;
    int carry = 0;
    int temp;
    int size;

    size = src1->numDigits+1;

    if ( (dest->digits == NULL) || (size > dest->maxDigits) )
    {
        if ( dest->digits != NULL )
            free(dest->digits);
        size *= 2;
        dest->digits = (char *) malloc(size*sizeof(char));
        dest->maxDigits = size;
    }
    destDigits = dest->digits;

    for ( pointer = 0; pointer < src1->numDigits; pointer++ )
    {
        temp = digit*digits1[pointer] + carry;
        if ( temp > 9 )
        {
            destDigits[pointer] = temp % 10;
            carry = temp/10;
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        }
        else
        {
            destDigits[pointer] = temp;
            carry = 0;
        }
    }

    if ( carry != 0 )
    {
        destDigits[pointer] = carry;
        pointer++;
    }

    dest->numDigits = pointer;

    assert(dest->numDigits <= dest->maxDigits);

    return dest;
}

/*--------------------*
 * dest = src1 / src2 *
 *--------------------*/
/*--------------------------------------------------------------------*
 * Division.  Create a table of 0*divisor, 1*divisor, ..., 9*divisor. *
 * Takes O(n*n), but uses binary search to find digits of answer.     *
 *--------------------------------------------------------------------*/
VLInt *VLIntDivide(VLInt *src1, VLInt *src2, VLInt *dest)
{
    static VLInt rest;
    static VLInt table[10];
    static VLInt temp, temp2;
    static boolean init = FALSE;
    register char index;
    register int place;
    register char digit;
    int maxPlace = 0;
    int size;

    if ( ! init )
    {
        temp.digits = NULL;     temp2.digits = NULL;    rest.digits = NULL;
        for ( index = 0; index < 10; index++ )
            table[index].digits = NULL;

        init = TRUE;
    }

    VLIntCopy(src1, &rest);
    for ( index = 0; index < 10; index++ )
        VLIntMultiplyDigit(src2, index, &table[index]);

    place = rest.numDigits - src2->numDigits;
    size = place+1;
    if ( (dest->digits == NULL) || (size > dest->maxDigits) )
    {
        if ( dest->digits != NULL )
            free(dest->digits);
        size *= 2;
        dest->digits = (char *) malloc(size*sizeof(char));
        dest->maxDigits = size;
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    }

    while ( VLIntLessThan(src2, &rest) )
    {
        digit = VLIntDivideResultDigit(&rest, src2, place, table, 0, 9);
        dest->digits[place] = digit;
        if ( digit != 0 )
        {
            VLIntShiftLeft(&table[digit], place, &temp);
            VLIntSubtract(&rest, &temp, &temp2);
            VLIntCopy(&temp2, &rest);
            maxPlace = (place > maxPlace) ? place : maxPlace;
        }
        place--;
    }

    while ( place >= 0 )
    {
        dest->digits[place] = 0;
        place--;
    }

    dest->numDigits = maxPlace+1;

    return dest;
}

char VLIntDivideResultDigit(VLInt *src1, VLInt *src2, int place, VLInt table[],
                            char left, char right)
{
    VLInt *temp;
    char middle;
    int numDigits;
    char *digits1, *digits2;
    register int index;

    if ( left == right )
        return left;

    middle = (left+right+1)/2;
    temp = &table[middle];

    numDigits = src1->numDigits-place;

    if ( numDigits < temp->numDigits )
        return VLIntDivideResultDigit(src1, src2, place, table, left, middle-1);
    else if ( numDigits > temp->numDigits )
        return VLIntDivideResultDigit(src1, src2, place, table, middle, right);

    digits1 = src1->digits;
    digits2 = temp->digits;
    for ( index = src1->numDigits-1; index >= place; index-- )
        if ( digits1[index] < digits2[index-place] )
            return VLIntDivideResultDigit(src1, src2, place, table,
                                          left, middle-1);
        else if ( digits1[index] > digits2[index-place] )
            return VLIntDivideResultDigit(src1, src2, place, table,
                                          middle, right);

    return middle;
}
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/*--------------------*
 * dest = src1 % src2 *
 *--------------------*/
/*------------------------------------------*
 * Modulo.  Basically the same as division. *
 *------------------------------------------*/
VLInt *VLIntMod(VLInt *src1, VLInt *src2, VLInt *dest)
{
    static VLInt table[10];
    register char index;
    register int place;
    register char digit;
    static VLInt temp, temp2;
    int maxPlace = 0;
    static boolean init = FALSE;

    if ( ! init )
    {
        temp.digits = NULL;    temp2.digits = NULL;
        for ( index = 0; index < 10; index++ )
            table[index].digits = NULL;
        init = TRUE;
    }

    VLIntCopy(src1, dest);
    for ( index = 0; index < 10; index++ )
        VLIntMultiplyDigit(src2, index, &table[index]);

    place = dest->numDigits - src2->numDigits;
    while ( VLIntLessThan(src2, dest) )
    {
        digit = VLIntDivideResultDigit(dest, src2, place, table, 0, 9);
        if ( digit != 0 )
        {
            VLIntShiftLeft(&table[digit], place, &temp);
            VLIntSubtract(dest, &temp, &temp2);
            VLIntCopy(&temp2, dest);
            maxPlace = (place > maxPlace) ? place : maxPlace;
        }
        place--;
    }

    return dest;
}

void VLIntCopy(VLInt *src, VLInt *dest)
{
    if ( (dest->digits == NULL) || (src->numDigits > dest->maxDigits) )
    {
        if ( dest->digits != NULL )
            free(dest->digits);
        dest->digits = (char *) malloc(2*src->numDigits*sizeof(char));
        dest->maxDigits = 2*src->numDigits;
    }
    bcopy(src->digits, dest->digits, src->numDigits*sizeof(char));
    dest->numDigits = src->numDigits;
}

/*------------------------*
 * dest = src*10^exponent *
 *------------------------*/
VLInt *VLIntShiftLeft(VLInt *src, int exponent, VLInt *dest)
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{
    char *destDigits;
    int size;

    size = exponent + src->numDigits;

    if ( (dest->digits == NULL) || (size > dest->maxDigits) )
    {
        if ( dest->digits != NULL )
            free(dest->digits);
        dest->digits = (char *) malloc(size*2*sizeof(char));
        dest->maxDigits = size*2;
    }
    destDigits = dest->digits;

    bcopy(src->digits, &destDigits[exponent], src->numDigits*sizeof(char));
    bzero(destDigits, exponent*sizeof(char));

    dest->numDigits = size;

    assert(dest->numDigits <= dest->maxDigits);

    return dest;
}

/*--------------------*
 * dest = src + digit *
 *--------------------*/
VLInt *VLIntAddDigit(VLInt *src, char digit, VLInt *dest)
{
    char *digits, *destDigits;
    register int pointer;
    register char carry;
    int size;

    if ( src->numDigits == 0 )
    {
        VLIntCreate(dest, (unsigned long) digit);

        assert(dest->numDigits <= dest->maxDigits);
        return dest;
    }

    digits = src->digits;
    size = src->numDigits+1;

    if ( (dest->digits == NULL) || (size > dest->maxDigits) )
    {
        if ( dest->digits != NULL )
            free(dest->digits);
        size *= 2;
        dest->digits = (char *) malloc(size*sizeof(char));
        dest->maxDigits = size;
    }
    destDigits = dest->digits;

    carry = digit;
    for ( pointer = 0; pointer < src->numDigits; pointer++ )
    {
        destDigits[pointer] = digits[pointer] + carry;
        if ( destDigits[pointer] > 9 )
        {
            destDigits[pointer] -= 10;
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            carry = 1;
        }
        else
        {
            carry = 0;
            bcopy(&digits[pointer+1], &destDigits[pointer+1],
                  (src->numDigits-(pointer+1))*sizeof(char));
            break;
        }
    }

    if ( carry == 1 )
    {
        destDigits[pointer] = carry;
        dest->numDigits = src->numDigits+1;
    }
    else
        dest->numDigits = src->numDigits;

    assert(dest->numDigits <= dest->maxDigits);

    return dest;
}


