
Background

Graceful graphs are the creation of Solomon W. Golomb, 

professor of electrical engineering and mathematics at the 

University of Southern California.

A graceful graph is a graph of points and connecting lines 

which can be numbered in a certain way.  Let us say the graph has 

p points and e lines (e for edges) connecting them.  Each of the 

points is assigned an integer.  Each of the lines is labeled with the 

difference between the two integers of the points which it 

connects.  Then, if the numbers corresponding with the lines run 

from 0 through  e, then the graph is said to be graceful.  See 

Figure B-1 for an example of a graceful graph.

Let us take a special case of graphs in which every point is 

connected to every other point.  These graphs, some of which are 

shown in Figure B-2A, are called complete graphs.  These special 

graphs may be viewed in a less abstract way as follows:  Form a 

ruler with p different divisions, each division corresponding to a 

number on the graph.  See Figure B-2B for examples.  Such graphs 

where the ruler can measure each of, but only, the distances from 

0 through the length of the ruler are called perfect Golomb rulers.

There are no perfect Golomb rulers with more than 4 divisions 

(proof is shown in the folder).  Golomb rulers with more than 4 



divisions (not perfect Golomb rulers) are those which measure 

unique lengths.  In other words, the ruler in Figure B-3A is a Golomb 

ruler, but the one in Figure B-3B is not.

Throughout this project, a ruler is represented by a sequence 

of numbers.  Each number represents the length of a division on a 

ruler.  For example, see Figure B-4, which shows the ruler 1, 3, 5, 

2.



Purpose

By selecting a long enough ruler and dividing it in the right 

way, it is fairly easy to construct a Golomb ruler.  The purpose of 

this project, therefore, is to find a way of constructing the 

shortest  possible Golomb rulers.

For example, Figure 1-A shows a Golomb ruler with 6 divisions.  

It is not, however, the shortest such ruler.  Figure 1-B displays the 

shortest possible 6-division Golomb rulers.  We want to find a way 

of finding the shortest possible Golomb rulers for any number of 

divisions.



Hypothesis

Previous searches have revealed minimum-length Golomb 

rulers for up to 12 divisions.  These are shown in Figure 2.

At first glance, the lengths have no apparent pattern to 

them:  3, 6, 11, 17, 25, 34, 44, 55, 72, 85, 106.  Upon further 

staring, nothing clicks.  This is not a simple problem.

To begin with, as stated before, there are no perfect Golomb 

rulers with more than 4 divisions.  Let us analyze these impossible 

Golomb rulers.  A Golomb ruler with p divisions measures a certain 

number of distances, as shown in Figure 3.  A pattern is easily 

seen:  1, 3, 6, 10, 15, etc.  The differences between these 

numbers is 1, 2, 3, 4, 5.  So these numbers are simply the sum of 

the numbers 1 through p.  This is commonly-known (among 

mathematicians, at least) as (p)(p+1)/2.  A proof is shown in the 

folder.  In any case, the point is that these (1, 3, 6, 10, 15, etc.) 

would be the lengths of the rulers if all Golomb rulers were perfect 

Golomb rulers.  A non-perfect Golomb ruler, since it must - by 

definition - measure unique distances, must have a size greater 

than 1, 3, 6, etc. (depending on its number of divisions).

The actual lengths 3, 6, 11, 17, 25... are very close to the 

perfect series 3, 6, 10, 15, 21.  In fact, the differences are 0, 0, 

1, 2, 4, 6, 8, 10, 17, 19, 28.  Still, however, no pattern is easily 



recognizable.

People jokingly say scientists either change data to fit their 

hypothesis or change their hypothesis to fit the data.  Having 

looked for a clue to a solution and having found none, I won't hazard 

an unfounded guess.



Methods

To help in the search for a method of developing Golomb 

rulers, I began to write a series of computer programs in the C 

programming language for the Apple Macintosh.  All of these 

programs are listed separately in the folder.  While I was working 

on these programs, I also began looking into establishing upper and 

lower bounds for the lengths of Golomb rulers.  The search is 

documented more completely in the folder.  A few proofs for the 

non-existence of certain rulers are also shown in the folder.

The main problem in writing the computer programs was that 

much attention had to be given to speed.  At first, the time factor 

was not known.  After the bugs were worked out of the program 

and the program was tested, however, it was clear that the 

program would be of almost no use in its present form.  So the 

program had to be completely revamped - one whole section of it 

completely rewritten - and then debugged yet again.

Even after a speed increase of at least 10 times, the program 

was still too slow to provide much useful information.  So the 

program was modified to skip certain sets of numbers.  A 

different modification let the user enter the numbers to check.

The modified program was then stripped to the bone so that it 

only checked for Golombicity (whether or not it's a Golomb ruler) 



for one user-entered ruler.  Still another program averaged the 

division lengths in certain positions of a Golomb ruler.  For example, 

if the program found two rulers, 1 3 5 2 and 2 5 1 3, then the 

average of those two rulers would be 1.5  4  3  2.5.  The purpose 

of this was to hopefully provide information on the general 

structure of Golomb rulers.



Results

All of the results from the computer programs are listed in 

the folder.  The listings were analyzed and different theories were 

tested, but most failed.

The folder contains several proofs concerning Golomb rulers.  

There is a proof that there are no perfect Golomb rulers with more 

than 4 divisions.  There is a proof that there are no Golomb rulers 

with more than 6 divisions which have a length of (p(p+1)/2)+1, 

where p is the number of divisions.  That is the highest the lower 

bound was computed to.

Clearly, a ruler with divisions of lengths 1, 2, 4, 8, 16, etc. is 

a Golomb ruler.  A formal proof is shown in the folder.  Also, a ruler 

such as 1, 2, 4, 5 or 1, 2, 4, 8, 9 is Golomb (proof also shown).  So 

the upper bound was lowered to 2p-1 + 2p-2.  This was clearly a 

terrible upper bound.  The best method - by far - that I could find 

of constructing Golomb rulers is what I call the Middle Number 

Method.

After looking at the different Golomb rulers, it seemed as if 

many followed a similar pattern.  The numbers are almost in 

numerical order if we count in this manner:  left, right, left, right, 

beginning on the outside and ending up in the middle.  For example, 

the ruler 1 3 6 5 2 would be read 1, 2, 3, 5, 6.  The Middle Number 



Method starts with a Golomb ruler with 3 divisions, such as 1 3 2, 

and tries to find a number larger than any of the others to place in 

the middle so that the ruler remains Golomb.  If we start with 1 3 

2, then the rulers continue 1 3 5 2, and 1 3 6 5 2 and 1 3 6 8 5 2 

and so on.  A proof that the Middle Number Method works (that 

there always exists such a number to place in the middle) is 

located in the folder.  The listing of a computer program to find 

these rulers is also in the folder.

All of the lower and upper bounds are shown in Figure 4, along 

with the results from the Middle Number Method.



Observations

As expected, there are more Golomb rulers with longer 

lengths.  This isn't simply because there are more rulers (although 

that is part of the reason); the greater length means that the 

division lengths are more distinct.  For example, if we have a ruler 

with division lengths of 1, 2, 3, and 27, then the 27 portion can be 

placed anywhere in the ruler and not change the Golombicity of the 

ruler.  On the other hand, if the ruler had lengths 1, 2, 3, 5 then 

the 5 portion is restrictive to the ruler because the 2 cannot be 

placed next to the 3.

It would seem that if we start the Middle Number Method with 

a longer 3-division ruler, then all of the resulting lengths would be 

longer.  This is not the case.  For up to about 25 divisions, it holds 

true.  However, using 1 3 2 as our beginning ruler the 36-division 

ruler is 3182 units long, whereas with the 1 4 3 beginning ruler the 

36-division ruler is 3134 units long.  And the difference gets larger 

for larger rulers.  For 40 divisions the difference is 4490 to 4264.

As far as the averaging data goes, it appears that smaller 

rulers are more distinct, while larger rulers are very different, 

causing the average ruler to look very dull - as in 2 5 5 5 5 in one 

case.  Figure 5 compares the different average-ruler results.  Due 



to a feature of the program, only rulers in which the first division 

is shorter than the last will the ruler be counted as Golomb.  For 

example, it will count 1 3 5 2 but not 2 5 3 1.  In this manner, 

mirror-images are not counted as two, but it also forces the 

average of the last division to be at least 2.



Conclusions

I failed to find a method of constructing the shortest possible 

Golomb rulers.  I did, however, find an algorithm for constructing 

Golomb rulers of any number of divisions - the Middle Number 

Method.  Also, I created a lower bound for the lengths of Golomb 

rulers.  This will be helpful in the search, as it will avoid wasting 

time looking for non-existent Golomb rulers.

Proof_machine.c, still being programmed, should provide a 

quick way of proving the non-existence of certain Golomb rulers 

and possibly provide a way of raising the lower bound.  A 

preliminary listing is located in the folder.

Finally, further analysis of the results of the programs used 

in this project, along with more running time on a faster computer 

(perhaps a rented Macintosh II), and a little luck should provide 

even shorter Golomb rulers than the shortest ones known at this 

time.



Significance

The following is an excerpt from a Scientific American article 

dealing with Golomb rulers (see folder for complete article).

Radio astronomy makes occasional use of Golomb rulers in the 
resolution of distant radio sources and in the measurement of our own 
planet.  In the first case a number of antennas are placed along a 
straight line several kilometers long.  The antenna positions correspond 
to the marks on a Golomb ruler.  To locate a distant radio source, it is 
essential to determine the angle between the antenna baseline and the 
direction of the wave fronts arriving from the source.  The antennas are 
all observing at a given wavelength.  The precise time at which each 
wave in the incoming signal arrived at each antenna can be determined 
by analysis of the tape that captures the incoming signal.  The total 
number of wavelengths between a given pair of antennas is called the 
total phase difference.  It is normally composed of an integer and a 
fractional part called the phase difference.  If the total phase difference 
can be reconstructed, the sought-for angle between the source and the 
baseline is easily calculated from the observing wavelength and c, the 
speed of light.  Each pair of antennas, however, can only yield the phase 
difference itself, not the total phase difference.

In truth, it is Fourier analysis that recaptures the total phase 
difference from the many pairs of antenna recordings.  But if the 
distance between one pair of antennas is the same or nearly the same as 
the distance between another pair, the two pairs provide the same 
phase-difference information.  Redundancy of information means its 
loss.  The accuracy of the source-angle computation is greatest if each 
antenna pair records a different phase difference; this condition is 
achieved by in effect placing the antennas on the marks of a Golomb 
ruler.

Okay, so if you didn't get all that mumbo-jumbo, in essence 

this is what it says:  if radio antenna are placed on the marks of a 

Golomb ruler, then they get more accurate results.  So the search 

for Golomb rulers does have significance.



Possible Extensions

There are several possible extensions to this project.

To begin with, this project deals only with Golomb rulers.  This 

is only a scratch on the surface of graceful graphs.  This project 

could explore the properties of graceful graphs.  Is it possible to 

tell if a graph is graceful simply by looking at it?

A different approach to the Golomb ruler problem could be 

pursued.  Instead of using a constant number of divisions and 

searching for the shortest length, we could start with a constant 

length and see how many divisions (and of what length) we need so 

that we can measure every length from 1 to the length of the 

ruler.  These would not be Golomb rulers, as they would measure 

some distances more than once.  But the problem would be of a 

similar nature.

Finally, Sophie Piccard, a Swiss mathematician, in 1939 

propounded a "theorem" stating that two rulers measuring the 

same set of distinct distances must be the same rulers.  The 

theorem fails for 5 divisions.  The theorem has not been disproven 

for longer rulers.  I have begun work on a computer program to 

find such a ruler, but as yet have not completed it.  A preliminary 

listing of the program is located in the folder.


